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Two inverse non-stationary problems of axially
symmetric deformation of a finite-length elastic
cylindrical shell
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Annotation. Problem. Among the many problems of the solid mechanics, there is a whole class of
problems that are related to inverse problems. In turn, among the inverse problems, many problems are
ill-posed. Obtaining an exact analytical solution of such problems is related to certain mathematical
difficulties and requires using special methods. Goal. The goal of the study is to obtain analytical
solutions for inverse problems of the identification of non-stationary load and the control of non-
stationary vibrations of a cylindrical shell with asymmetric boundary conditions. Methodology. In this
investigation, a refined theory of medium-thickness shells was used. Fourier series expansion, the theory
of integral equations and the Laplace transform were used to obtain the solution of the direct problem.
Tikhonov’s regularization method was used to solve inverse problems. Results. As a result of the
investigation, the solutions of two inverse problems of the solid mechanics were obtained. The first task
is to identify a fixed and moving concentrated axisymmetric non-stationary force acting on a cylindrical
shell, based on the displacement values at any point of the shell; identification of two fixed concentrated
forces. The second task is to control vibrations at any point of the cylindrical shell by introducing an
auxiliary concentrated force. Numerical results obtained demonstrate the fulfillment of the control
criterion as a result of the action of the given and auxiliary force. Originality. Analytical solutions of
the inverse problems of the solid mechanics for a cylindrical shell of medium thickness with asymmetric
boundary support conditions are obtained. Practical value. The technique received allows effective
identification of an unknown non-stationary load. It’s important for the rational design of reliable
cylindrical shell structures. Its use also makes possible to create a theoretical basis to control the
deflected mode parameters of cylindrical shell structural elements.

Key words: cylindrical shell, non-stationary load, inverse problem, regularization method,
identification, vibration control.

Introduction

Identification of external loads and controlling
the vibrations of constructional elements can be
related to inverse problems in mechanics of a
deformed solid. The complexity of their solu-
tion consists in that these problems are fre-
quently ill-posed.

Many papers deal with calculating of the de-
flected mode parameters in constructional ele-
ments under non-stationary load conditions, pro-
vided the acting loads are known. Less attention
is paid to loads identification problems and vibra-
tion control. After mathematical physics methods
for solving inverse problems came into being,
there appeared the possibility of applying them to
solving non-stationary problems in identification

and control of the deflected mode of construc-
tional elements, which undergo non-stationary
deformation.

Analysis of publications

Modeling of processes that occur in construc-
tional elements under load applied is based on the
application of the theory of vibrations. A wide re-
view of the models used to describe the vibrations
such constructional elements as rods, plates and
shells is given in [1]. Their use makes it possible
to solve a number of problems in the solid me-
chanics, including specific ones.

For example, in [2] the equilibrium equations
of a rib grid-stiffened composite cylindrical shell
reinforced with carbon nanotubes were obtained
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and the effects of grid ribs on the dynamic re-
sponse of the shell were studied. The investiga-
tion the transient responses of cylindrical shells
induced by moving and simultaneous impulsive
loads were carried out in [3]. The problem of the
forced vibrations of a discretely reinforced cylin-
drical shell on an elastic foundation under impul-
sive loading is described in [4-5]. The problem of
minimizing the mass of layered orthotropic con-
stant-thickness non-closed shells at impulse load-
ing was solved in [6].

Inverse problems should be considered as a
special class of problems in the solid mechanics.
Their solutions allow obtaining important results.
For example, in [7], solutions for new non-sta-
tionary inverse problems for elastic rods were ob-
tained. The solution of inverse retrospective
problems with a completely unknown space-time
law of load distribution is based on the method of
influence functions. The inverse problem to pre-
dict buckling of a cylindrical shell under an ex-
ternal pressure is considered in [8]. The work [9]
presents an inverse problem to predict dynamic
loads applied to the conical shells using the finite
difference method.

When solving inverse problems in the solid
mechanics, regularization methods proved to be
quite effective [10-12]. One of them is the
Tikhonov’s regularization method [13, 14]. It
widely uses to solve different inverse problems in
the solid mechanics.

In [15] based on augmented Tikhonov's regu-
larization method, a new computational inverse
method is proposed to reconstruct impact loads
acting on composite laminated cylindrical shell
with random characteristics. In [16], Tikhonov's
regularization method was used to determine the
dynamic load in a mechanical system with four
degrees of freedom. The problem to control non-
stationary vibrations of a rectangular plate by in-
troducing an additional (controlling) load is con-
sidered in [17]. The problem is solved using the
no classical theory of plates and Tikhonov's reg-
ularization method. The paper [18] presents a
solving the problem of controlling non-stationary
vibrations at a certain point of a rectangular plate
by introducing an auxiliary load, the law of
change in time of which is to be determined.
Identification of non-stationary loads acting to a
simply supported shell supported by concentric
stiffeners is considered in [19]. In the article [20],
using the Tikhonov’s regularization method, in-
verse problems are solved for a number of differ-
ent constructional elements in the form of plates
and shells.

Based on the analysis carried out, it can be
concluded that the solving of inverse problems

for constructional elements in the solid mechan-
ics is relevant. At the same time, the obtaining
exact analytical solutions of inverse problems for
specific constructional elements under non-sta-
tionary loading are insufficiently studied.

Purpose and Tasks

The goal of the investigation is to obtain analyti-
cal solutions for inverse problems of the identifi-
cation non-stationary load and the control non-
stationary vibrations of a cylindrical shell with
asymmetric boundary conditions.

To achieve this goal, the following tasks were set:

—development of a mathematical model to de-
termine the deflected mode parameters of a cylin-
drical shell under non-stationary load acting;

— solving the inverse problem to identify an
non-stationary load acting on a cylindrical shell
with asymmetric boundary conditions;

— solving the problem of controlling vibra-
tions for cylindrical shell with asymmetric
boundary conditions.

Direct problem

We shall consider a closed circular cylindrical
shell with the following boundary conditions: the
left edge of the shell is simply supported with
slippage along the axis of the shell, and the right
edge is clamped with slippage along the axis of
the shell (Fig. 1). The shell is subject to action of
a normal non-stationary concentrated force in
point Xp.
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Fig 1. Investigated mechanical system

This problem is solved by employing a tech-
nique based on introducing an additional com-
pensating concentrated moment Mo(t), which en-
sures absence of the shell normal rotation angle
at the right edge of the shell.

The response of an average-thickness shell of
the Timoshenko theory type to axially symmetric
transverse and concentrated moment loads is
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simulated by a system of linear differential equa-
tions [8]:
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is dimensionless time; t, is dimensional time; u
and w are displacements of points on the median
surface in axial and radial directions respectively;
w is rotation angle of the normal with respect to
the median surface of the shell; k is shear coeffi-
cient; Mo(t) is compensating moment; and q(&t)
is the transverse load.

The boundary conditions for the mechanical
system considered (Fig. 1) have the form:

N, (E, t)|é 0 =0; w(E, t)|§i

0)
m@mw=aw@wg=

The solution of a problem with boundary condi-
tions of form (2) is reduced to the problem of non-
stationary vibration of a simply-supported shell.

Substituting right edge clamping of the cylindri-
cal shell with a simply-supported one with a com-
pensating moment allows searching for the required
functions (displacements and rotation angle of the
normal) in the form of their expansion into the fol-
lowing trigonometric Fourier series:

w(g t)=
u(&t)
v(&1)

a, (t)sin(kn&);
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b, (t)cos(knE); (3)
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where ax(t), by(t), and cx(t) are unknown expan-
sion coefficients.

Expansion coefficients (3) are found from (1)
by using the properties of orthogonality of Fou-
rier series, and by applying the Laplace trans-
form. The functions for defining w(&,¢), u(& t)and
w(<,t) have the form:
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where o, are natural vibration frequencies of the

simply-supported shell.

The time component of the concentrated mo-
ment load (function Mp(%))is defined by using the
corresponding Volterra integral equation of 1-st
kind following from condition v (Z,£)=0.

Inverse problem

Identifying a normal concentrated non-stationary
load acting on a cylindrical shell consists in de-
termining the law of variation in time of a load by
defining flexure values win a certain point &, of
the cylindrical shell as a known time function 7).

Taking into account also the specified condi-
tion of equality to zero of the rotation angle of a
normal at the shell edge in the clamping, one can
form a system of 1-st kind Volterra integral equa-
tions for g(¥)and My(?).

w(g,,t)=f(t); w(t)=0. (5)

For a numerical solution of system (5), the Du-

approximated by finite sums based on the formu-
las of rectangles.

sin nngp)
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where mAt is the time interval considered;
m=0,1, ..., Mis number of time intervals; &, is
the value of the dimensionless axial coordinate of
the point to which the concentrated load is ap-
plied. The time step is designated as A¢

To find the unknown loads, it is convenient to
present system (5) in matrix form:

B,-q+C,-M, =w;

7
D-q+E-M, =0, ()

where g, Mo and w are column vectors corre-
sponding to functions g(%), Mp(t) and w(t); By, C1,

hamel integrals included therein  are D, and E are matrices. The elements of matrices
are defined as follows:
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After eliminating Mo from (7), we obtain the
matrix equation for the time component of the
identified load:

A'q:W’ (9)

where matrix A=B,-C,-E™-D. Relationship

(9) is the matrix analog of the Volterra integral
equation of 1-st kind. To derive an approximate
and steady solution of this equation, it is nec-
essary to apply Tikhonov’s regularization
method [1, 2].

The solution of matrix equation (9) is reduced
to solving a regularized system of linear algebraic
equations (SLAE) of the type:

(AT-A+a-C)g=A"-w, (10)

where AT is a transposed matrix with respect to
matrix A; C is a symmetric three-diagonal matrix
whose form is given in [1].

Equation (10) includes regularization pa-
rameter oo whose value is selected according to
the residual principle, viz. coordinating the
value of the residual on a regularized solution
with account of the error in the right-hand part
of the initial SLAE.

The method offered also allows to identify
moving loads of the form

a(et,)=alt, )w where Vj is the spec-

ified value of the velocity of concentrated force
movement. Note that the methods for calculating
the impact of moving loads on elasto-deformed
elements of constructions, including inertia ones,
which are based on solving direct problems, are
described in monograph [9].

The suggested method of defining the time de-
pendence of one concentrated load can be gener-
alized to determine the variation in time of two
and more concentrated loads.

Figure 2 can be considered as a loading
scheme of a shell with two concentrated loads,
where the laws of variation in time of loads acting
on ashell, defined by functions gi(t) and g(t), are
unknown.

The relationships for identifying two concen-
trated loads by displacement values w, specified
in two points of the shell, can be presented in ma-
trix form as:

Bll'q1+Blz'q2 +C11'Mo =Wy,
le'q1+Bzz'qz +012'M0 =W, (11)
D,-q,+D,-q,+E-M, =0.

In equations (11), matrices Bi1, Bi2, B21, B2,
C11, C12, D1 and D; are derived from matrices By,
C: and D by introducing corresponding coordi-
nates of displacement registration points and
points of application of loads (for example, ma-
trix Baz corresponds to matrix By with the dis-
placement registration point coordinate ws, and
the load application point coordinate ¢z; matrix
C12 answers matrix C; with displacement regis-
tration point coordinate w.; matrix D, is derived
on the basis of matrix D with account of the load
application point coordinate qa).

The values of two concentrated loads can be
obtained by presenting the solution of the system
of matrix equations (11) as:

A'q1:f1; A'szfzv (12)

where the following designations of matrices and
column vectors are used:

A= Bn'(Bzz'E'Clz'Dz)'Blz><
X(le'E'Clz 'D1)+C11'(821'D2 'Bzz'Dl);

f1=(Bzz'E'Clz'Dz)'Wl'Blz'E'Wz +
+Cpy-D,-w,; f, =B -E-w, -
'(821'E'C12'Dl)'Wl'Cn'Dl'Wz-

A system of two loads is identified by apply-
ing Tikhonov’s regularization procedure to each
of matrix equations (12).

Controlling problem

Let us consider the problem of controlling cylin-
drical shell vibrations.

The cylindrical shell is acted upon with
transverse non-stationary axially symmetric
concentrated load gi(t) whose law of variation
in time is known. As a result of its action, a
deformation process occurs in the cylindrical
shell, which causes its non-stationary vibra-
tion. The objective of the controlling problem,
at non-stationary vibrations of the cylindrical
shell, is to define controlling load q(t) (ap-
plied in point &,) whose combined action with
load qi(t) (applied in point &) would ensure
fulfilment of the required controlling criterion
(a specified law of variation in time of dis-
placement in certain point &o (controlling cri-
terion)). The loading scheme of the shell is
shown in Figure 2.
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Fig. 2. Loading scheme for the controlling prob-
lem

Knowing the flexure vs. time function f(t), and
taking into account equality to zero of the rotation
angle of the shell edge in the clamping, we have

_2(1—V2)|2 (Cn —aﬁr)(Bn —aﬁ,)sin(nnél)

a set of equations:

W(&,,1) = T (b);

13

y(l,t)=0. (13)

Similarly, to the algorithm described earlier in

inverse problem, system (13) is reduced to the
matrix form:

B,-q,+B,-q, +C,- M, =w; (14)

D1'q1+D2'q2+E1'Mo =0,
where q1 and w are known time functions (load
and flexure variation in time, which meet the con-
trolling criterion) approximated as column vec-
tors; g2 and My are column vectors of unknown
time functions; By, Bz, C1, D1, D2 and E; are ma-
trices. The elements of matrices C; and E; can be
obtained according to (8), and Bs, Bz, D1 and D-
are obtained as follows:

w 3
im,p =ZZ Eh

o)

Kormp SIN(NTTE, );

(Bn _aﬁr)

(15)

sin(nn,) Komp €OS(NTT);

o 3
Dlmvp = ZZ Eh3 3
Oy

j=1
J£r

24(1-v*)P*ank”

a-—ocz)

(Bn _aﬁr)

I nrmp

nr

o 3
D2m,p = ZZ Eh3

]

The solution of equation (14) is reduced to (9),
and then Tikhonov's regularization algorithm is
applied.

Numerical results

The cylindrical shell with the following parame-
ters has been considered for numerical analysis:
I=1.5 m, a=0.3 m, h=0.043 m, E=2.1-10" Pa,
v=0.3, and k=0.833. The maximum value of load

3
anrH(oc
1

2
nj _anr)

j;r

Sin(m@)k cos(nm).

I nrmp

0o =10° H/m? and the duration of load action
®=0.00046 s.

The results of identifying the concentrated
load described by a difference of Heaviside's
functions as a step-function (16) are shown in
Figure 3.

(& —
(&) =a, (HM) - H(t —w))@ (16)
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Fig. 3. Identification of the concentrated load

In the Figure, the following curves are desig-
nated: 1 is a non-stationary load which was se-
lected as input data when solving the direct prob-
lem; 2 is flexure of the shell in a point with coor-
dinate £&=0.75, which occurs due to action of the
non-stationary load mentioned (the flexure curve
is also superimposed with a flexure curve with
"noise™ that models inaccuracies, for instance, of
experimental data, which reached 5 % of the
maximum flexure amplitude); 3 is the load iden-
tified by "noise" data with optimal parameter of
regularization ¢; 4 is the load calculated with the
regularization parameter whose value is near to
optimum, but still in an area with steady approx-
imated solutions.

The optimal value of the regularization param-
eter was selected by applying the discrepancy prin-

ciple [1, 2] in such a manner that the value of the
difference of norms “w5 —age|

| —||8|||2 was equal
to zero. The graph illustrating how the optimal
value of the regularization parameter was selected

for a concentrated load is shown in Fig. 4.
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Fig. 4. Selecting the optimal value of the regular-
ization parameter

The graph in Fig. 5 illustrates the effective-
ness of the algorithm of selecting an optimal
regularization parameter.
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T
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2
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Fig. 5. Divergence value under different regular-

ization parameters

The divergence value is meant to be a param-
eter which can be named as the average diver-
gence of the values of the load being identified
from its exact values. This parameter is calcu-

M
lated by formula »’|q, —q, */M, where Mis
m=1

number of points in which investigated time
function q is calculated. Fig. 5 shows the func-
tional relationship between the divergence of
identified concentrated load ¢ and load g%
which was used as input data for solving the di-
rect problem depending on the value of the reg-
ularization parameter. As seen in Figs. 4 and 5,
the minimum divergence of values of the identi-
fied load is reached near to the optimal value of
the regularization parameter defined by the dis-
crepancy (see Fig. 3). The absolute value of the
minimum divergence is approximately equal to
3,700 N, this being 3.7 % of the maximum am-
plitude of the external load. The absolute value
of the average divergence, corresponding to an
optimal regularization parameter, is approxi-
mately equal to 3,800 N, which is 3.8 % of the
maximum amplitude of the external load.

The results of identification of a moving an-
nular concentrated load are presented in Fig. 6.
It was assumed that the load appears in an initial
point of time at the left edge of the shell. Then it
moves with a constant velocity of 2,223 m/s to
the right edge, and disappears when it reaches
the right edge of the cylindrical shell. Curve 1 is
a non-stationary moving load; 2 is displacement
in point £~=0.75; and 3 is the load that has been
identified.
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Fig. 7. Identification of two concentrated loads

The results of identifying two concentrated
loads with respect to displacement values w are
presented in Figs. 7 and 8 (curves 2). Fig. 7, aand
b, illustrate the variation in time of loads g: and
2 respectively (curves 1), which cause cylindri-
cal shell displacements w; and w, (Fig. 8, curves
1 and 2 respectively). The loading (variation in
time of loads gi1 and g3), which acts on the cylin-
drical shell, is identified by using the values of
displacements with superimposed "noise" that
models initial data errors. The coordinates of the
points of application of loads are: g; - £=0.5; and
02 - £&=0.75. The coordinates of points in which
displacements are registered are: w; - £=0.4; and
wz - £=0.9. The input data "noise" level was 5%
of the maximum displacement amplitude.
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Fig. 8. Input data for identification of two con-
centrated loads

Fig. 9 shows results related to the problem of
controlling the deflected mode of a cylindrical
shell under action of an external normal concen-
trated load.

Flexure o (2)in the point with coordinate £~0.5
(in the middle of the shell) is taken as the control
criterion.

The graphs of the controlling load (curve 3) and
the external load g(?) (curve 1), which change as
a sinusoidal half-wave (17), are shown in Fig-
ure 9. Curve 4 in this Figure meets the specified
controlling criterion. The points of application of
loads are: &;=0.35; and £5=0.65.

0y (t) =0 (H(t) - H (t - »))x
xsintn_t)és(a_al) (17

o) I
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Figure 9, curve 2, presents the flexure caused
by action of only one load q(t).
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Fig. 9. Rezults of flexure control

Curve 4, which illustrates the controlling cri-
terion, is superimposed with a dotted curve that
demonstrates fulfilment of the control criterion
due to action of the specified and controlling
load, i.e. a curve obtained by implementing the
control operation.

Conclusion

In this paper, solutions of two inverse problems
in solid mechanics are obtained. The first prob-
lem is identification of a motionless and mov-
ing concentrated annular non-stationary load
acting on a cylindrical shell by applying dis-
placement values in a certain point of the shell;
and identification of two motionless concen-
trated loads. The second problem is controlling
vibrations in a certain point of the cylindrical
shell by introducing an additional load, which
is the controlling one.

The direct problem was solved by using ex-
pansions of sought for functions into Fourier
series, and the Laplace transform; the inverse
problem was solved by using the theory of
Volterra integral equations of 1-st kind, and
Tikhonov's regularization algorithm.

By applying Tikhonov's regularization algo-
rithm, one can effectively identify unknown
non-stationary loads, which is crucial for effi-
cient design of reliable constructions contain-
ing cylindrical shells as elements. Its applica-
tion also allows constructing a theoretical basis
for implementing control of different parame-
ters of the deflected mode of a cylindrical shell.
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JIBi o0epHeHi HecTanioHapHi 3aga4i
ocecHMeTPUYHOro fedopMyBaHHS NPYKHOI
IUJIIHAPUYHOT 000J10HKH CKiHYEHHOT T0BKUHHI

Anomayin. Ilpoonema. Cepeo bazamvox 3a0au me-
Xawixu 0eghopmieHo20 meepooeo mina iCHye yinuil
Kaac 3a0au, AKi 6IOHOCAMbCsL 00 0bepHenux. B ceorw
uepey ceped obepHenux 3aday bazamo 3a0ay € He-
Kopexmuo nocmagneHumy. OmpumaHHs mouHo2o
AHATIMUYHO20 PO38 A3KY MAKUX 34044 N0 SI3aHO 3
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HeGHUMU MPYOHOWAMU MAMEMAMUIHO20 XAPAK-
mepy i nompebye 3acmocy8ans CneyiaibHux me-
moodie. Mema. Memorwo 00cniodcents € OMpPUMAHHS
AHATMUYHUX PO36 'S3KI8 0OEpHEeHUx 3a0ay 3 i0eH-
mugbikayii HecmayioHapHo2o HABAHMANCEHHS MA
VAPABNIHHIO HECMAYIOHAPHUMU KOTUBAHHAMU YUITI-
HOPUYHOI ODONIOHKU 3 HEeCUMEMPUYHUMU SDAHUY-
Humu ymosamu. Memooonozia. Ilpu oocnioxcenni
6y/1a BUKOPUCANA YMOYHEHA Meopis 000I0HOK ce-
Peonvoi mosugunu. /st OmpumanHs po3e si3Ky npsi-
MoOi 3a0aui GUKOPUCOBYBANOCA PO3KNAOAHHA Y
paou @yp’e, meopisn iHmespaIbHUX PiGHAHL MA Ne-
pemeopenns Jlannaca. Ilpu po3e ’si3anni ob6eprenux

3a0ay Oy8 BUKOPUCMAHUL MEmooO pe2yaapusayii

A.M. Tuxonosa. Pesynemamu. B pesyrvmami ooc-
JIOMNCEHHS. OMPUMAHO PO36 3KU 080X 0OEPHEHUX
3a0ay MexaHiku 0e@opMieH020 mEepoo2o mid.
Ilepwa 3a0aua — ioenmugixayis Hepyxomozo ma
PYXOMO20 30CEePe0AHCEH020 0CeCUMEMPUYHO20 He-
CMAayioHapHo20 HABAHMANCEHHS, WO OI€ HA YUTiH-
Opuuny 000NOHKY, HA OCHOSI 3HAUEeHb nepeMiljeHsb
6 0YOb-aKiil mouyi 000NOHKU, I0eHmuU@iKayis 080x
HepYyXoMux 30cepeodiceHux Hasanmaicenv. [pyea
3a0aua — ynpasiiHHsA KOIUBAHHAMU 8 OYOb-aKill mo-
yyi YuriHOpuuHoi 0OOIOHKU 3a OONOMO2SOK 66¢-
OeHHsl OONOMIINCHO20 30CePeddHCeH020 HABAHMA-
orcenns. Ompumano yucenvui pesynbmamu, wo oe-
MOHCIPYIOMb BUKOHAHHS KPUMEPII0 YNPAGHIHHA 8
pe3ynvmami Oii 3a0an020 ma OONOMIJICHO20 HABA-
umaoicenns. Opuzinanvruicmos. Ompumano anaii-
MUYHI P38 'A3KU 0OEPHEHUX 3a0ay MeXaHiKu degho-
PMIBHO20 MEep002o mina 0ist YUriHOpuuHoi 060.10-
HKU CepeoHboi MOSWUHU 3 HeCUMempPUYHUMU

epaHuyHumMu ymosamu 3akpinaenns. Ilpakmuune
3Hauennna. Ompumana Memoouxa 0036074€ eQpex-
MueHo i0eHmupiKysamu Hegioome HeCmayioHapHe
HABAHMAICEHHS, WO € BAICTUBUM O PAYIOHATb-
HO20 NPOeKMY6aHHs HAOIUHUX KOHCMPYKYIU, W0
Mmicmamo yuninopuuni obononku. Ii euxopucmanus
00360J1€ MAKOHC NOOYOY8amu meopemuymy 6a3y
071 peanizayii ynpasiiHHsa napamempamu npyscHo-
0eopMieH020 cmawny enemeHmie KOHCMPYKYil y
8U2A0T YUTTHOPUHHUX 0DOJIOHOK.

Knrouogi cnosa: yuninopuuna o6onouxa, Hecmayio-
HapHe HABAHMAICEHHS, 0OePHEeHA 3a0aud, pecyiapu-
3ayis, i0eHmugikayis, ynpaeiiHHs KOTUSAHHIMU.

Bopomaii Ouexciii Baaepiitosuu?®, 1.1.1., mpogecop
kadenpu geTaiell MaliuH Ta Teopii MalluH 1 MeXaHi-
3miB, e-mail: voropay.alexey@gmail.com,

tel.: +38050-524-92-54,

ORCID: http://orcid.org/0000-0003-3396-8803
IoBaasieB Cepriii IBanoBHMY!, K.T.H., JJOIICHT
kadeapu eTaneit MalliH Ta Teopil MaIluH 1
MexanisMmis, e-mail: povalyaevsi@ukr.net,

tei.: +38-097-199-23-31,

ORCID: https://orcid.org/0000-0001-9027-0132
Illapamara Auapiii CepriiioBu4’, K.T.H., TOIECHT
kadeapu meraneit MaIvH Ta Teopii MaIIvH 1 Me-
xaHi3mis, e-mail: shandreysh@gmail.com,

ten. +38-097-273-10-70,

ORCID: http://orcid.org/0000-0003-0823-9262

X apkiBchKuii HaliOHANTBHUI aBTOMOOLIBHO-TOPOK-
Hil yHiBepcuTeT, ByJ1. SIpocinaBa Mynporo, 25,
Mm.XapkiB, Ykpaina, 61002.

Automobile transport, Vol. 51, 2022


mailto:voropay.alexey@gmail.com
http://orcid.org/0000-0001-7404-6691
mailto:povalyaevsi@ukr.net
https://orcid.org/0000-0003-2083-4937
mailto:shandreysh@gmail.com
http://orcid.org/0000-0003-0823-9262

