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ON EQUIVALENCE OF KELVIN AND MAXWELL
MULTIELEMENT MODELS

V. Bogomolov, Prof., D. Sc. (Eng.), I. Raznitsyn] Assoc. Prof., Ph. D. (Eng.),
Kharkov National Automobile and Highway University

Abstract. The problem of Kelvin and Maxwell model equivalence in one- and three-dimensional cases
is investigated. The equations of one model transfer to the other one have been given.
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Introduction The authors of [2] suggested a hypothesis of the
equivalence of Kelvin and Maxwell multiple-

In engineering practice of modelling the physi- unit models.
cal structure of materials with linear visco-
elastic properties the mechanical models In the paper we substantiated this statement for
composed of elements of elasticity and viscosity one-dimensional models, and the conditions un-
interconnected in different ways have become der which it was true for a three-dimensional
rather widespread. In [1], some (three or four- case.
element) one-dimensional models  were
observed to be equivalent at the expense of se- Objective and Problem Setting
lecting component characteristics. This means
that the relation between the stress and strain In Fig. 1-4 and 5-8 the structural diagrams of
generated by these models is equal. models called Kelvin and Maxwell generalized

models in the scientific literature respectively,
are shown:
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The main aim of the work is to investigate the
question: under what condition for the model of
one type there exists an equivalent model of the
other type?

One-dimensional models

In one-dimensional case for the mechanical
models of the theory of linear viscoelasticity the
relation between the stress (o) and the strain
(¢) can be seen in terms of the differential
equation (hereinafter referred to as the model
equation), set up by certain rules [1], [3]. In the
operator form it is written as follows

P(p]: ---:pn]: k]a A3} n2’ D)G_ (1)
:Q(p]’ ---apnla eeey k]: eeey n29 D)S
d
where Dzz, P(pys s Ppis ks os ks S)
t
and O(p,, ..., P> ky» -.r kp, S) are polynomi-

als (from §'), which coefficients are dependent
on the parameters of the component elasticity
(p;) and viscosity (k;), n, and n, - the number
of elasticity and viscosity elements included into
the block diagram model.

Then we accept such definitions.
Definition 1. Two one-dimensional models are
equivalent if the following conditions hold

0,(5) _ 0,(S).

deg B, =deg P, 3)
where B, O, u P, O, are equation polynomi-
als of the first and the second models.

Definition 2.

The model is called multiple, if there is an
equivalent model with a less number of elements
and non-multiple otherwise. It is easy to ascer-
tain that concerning the Kelvin and Maxwell
models the following facts are true.

Statement 1.

pz

M p ;\4
M
kj

essary and sufficient for non-multiplicity of

Condition k —= (kM );i# j 1is nec-

1'

models shown in Fig. 1 (Fig. 8) with i, j=1,n,
and for models — in fig. 2 — 4 (Fig. 5-7) with
i,j=2,n.

Statement 2. Any multiple Kelvin or Maxwell
model is equivalent to a non-multiple model of
the same type, i.e. shown in the same figure, but
with less # .

The equations of non-multiple Kelvin and
Maxwell models are presented in Table 1 (see
Appendix).

Now we formulate the main result for the one-
dimensional case.

; )
B(S) B(S)
Table 1 Non-multiple Kelvin and Maxwell model equations
Figure number
1 K
Z +D)]G [17( +D)]e
2 1 K
[— 17( +D) +Z +D)]cs [17( +D)]e
1
3 1 n K K
—,(,172(2’ +D)+Dzk— 17( +D)]c [DIY( +D)]e
i=! i =25
4 1 K K K
—Kz{(f(’ +D)+Dzk— 17( +D)]o= [DIY( +D)]e
i= . =2 ]
> pl pl
[17( =+D)]c= [DZp, 11 (o +D)le
J=1 . i
6 n M 4 n M
[{7(%+D)]o=m“{7(%+D)+DZ@%H,(%+D)13
i=2 ki i=2 ki = i#l,j ki
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The end of the Table 1
Figure number
7 M M
[17( +D)]o= [kMIY( +D)+D2p] 1]7'(%#1))]3
J=2 Lk
8 M
[17( +D)]o= [kMIY( +D)+ZP’” n(pl +D)]e
Jj=2
Theorem 1 p, pY
For any Kelvin model there is an equivalent ] for

Maxwell model and, conversely, for any Max-
well model there is an equivalent Kelvin model.
First we note that proving this theorem accord-
ing to Statement 2 we can restrict ourselves only
by non-multiple models, and considering the
form of the model equations presented in Table.
1, the following inequalities are supposed to be
fulfilled

n

models in Fig. 1,8; / =2 for models in Fig. 2-7.
Now, for these models, it is sufficient to show
equations (we will call them transfer equation),
which allow us to find an equivalent model
parameter values by the parameter values of the
model. These equations are shown below in
Tables 2, 3 (see Appendix).

Table 2 Transfer equations from Maxwell models to Kelvin models

Figure number Transfer equations
IO -
kKK =kM #j( L )- kMM g(kM_xM_) . j=Ln
=K . M ,p___ ck - ’ ]
I.l1and 1.5 M D ! !
IO + £ M p,
i#l (7\‘] kl,M zg](}b M )
M > > WM - roots of the equati ZM Yk =0
, >..>A, -roots of the equation o kMS +p +k S =
i=2 P,
K 1 K 1 g(}“M }”M) K MM _ . A~
1.2 and 1.6 P = sk =——— — Py =—h;k; ;5 j=2n
u
ij ij ”OVM ilM
AMs > ts of th tion S°_PLKS L u
—roots of the equation Z—M py =0
i=2 P, k S
n 117(7“M_7\'M) N
K M,k _ M oM iz K MM
1.3 and 1.7 k] ngl- ;k k 7\. ]M—pM;pj _—7\.]- kj 5 ]_2,1’1
= H(?\. kM)
M Di kzM M
A > >AM —roots of the equation Z—M+k] =0
o p +k'S
1.4and 1.8 n n xM n(xM -
M, K M Ty
:zp}. ;k] :ij ,k/K :pl LJ 5
1 1 M i
1,1:71(7‘./ +kT4)
n M
| H(x“’%)
k . K _ _AMpK
p; = D Py =k
I
M pz klM _
Ay > >7» — roots of the equation ZW 0
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Table 3 Transfer equations from Kelvin models to Maxwell models

Figure Transfer equations
number
gL w1
R
1.5and 1.1 =i =V
" K
1105+ |
p;,\/[:k]M, i 'j=2,n;k}w=_}\‘_[( p;\/[
A I (M =A)) j
1¢]]
1
kK> >7» - roots of the equation » ————=0
d Z pl+kfS
| n(xf+i;)
i=2 :
l.6and 1.2 lez T ’p;sz]K,
> AT (W =05
pan pi 1¢]]
1
M =—_—_. p¥
J K )
}\'J'
1 1
A S >7»K - roots of the equation ) ———+—=0
: d Z K+kKS p]K
n(x'?+pf )’
17and13 | v __ 1 w__ 1 1
k] nq ’kj ?\‘K nq ©
L j — I\ —k
e S podb
" K
n(x'?+pf )
w1 -
pj o ]—2,1’1
1 K
Zf 17(7\. 7\. )
j:]kiK i#l,j
A > >k ts of th ti Z ! |
- roots of the equation
d K +kKs  kKs
pk
1.8 and 1.4 1172(7LK }<)
Py =n" k,’-”=—k—,<-p§4; J=Ln
IS =00 j
l¢]
A > LAk ts of th ti Z ! + ! | 0
- roots of the equation » ———+—+——=
a X +kXS  pX kXS

Three-dimensional models

When using a 3-D models of linear isotropic
material, built on the basis of the mechanical
block diagrams, each elasticity element is char-
acterized by a modulus of elasticity in shift (G)
and the Poisson’s ratio (u°), and each viscosity
element is characterized by the viscous re-

sistance coefficient (1) and strain coefficient
(n”). The relations connecting the stress devia-
tor components (c_l.j ), strain ones (3_1;) and also

mean stress () and strain (€,) can be written

in the form of differential equations, which are
defined as follows.
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Let P(pys oo s P> Ky oo s Ky D) and
opys s P> ks - s k,y, D) are operators of
the one-dimensional model equations (1), and

P (D)=P(Q2G,;, ..., 2G,,2n, ..., 20y, D); (4)

0,(D)=P(2G,, ..., 2G,,2n, ..., 2n,,, D); (5)

P(D)=P(p;, .., oys ki oo s oy D) (6)

s

Q.(D)=0(pys s Pyi> K5 o5 ks DY, (7)

« 2G,(1+pf
where p; = 2% 0F1) . =1,

1-2p;

. on(+p)
kiz—nl( +FVLI); i=1n,.

1-2p;

Then

P (D)o, =0,(D);,i,j=13, (8)

F.(D)o,=0.(D)e,. ©)

Definition 3. Two three-dimensional models are
equivalent, if the following conditions hold

0,4(5) _2:(5)  01,(5) _0:(S)
By(8)  Py(S) R(S)  PuS)’

(10)

deg P, =deg P, ; deg B, =deg P, (1)

In a three- dimensional case theorem 1 is false,
i.e. there is a Kelvin (Maxwell) model to which
there is no equivalent Maxwell (Kelvin) model.
However, one can select a wide class of models
to which the statement of this theorem is true.
Theorem 2.

If these conditions hold for a Kelvin (Maxwell)
model

K K M M
Gt G w
M; n; M; n;
L™ 1-207% GF  1+pp"
EITH FATASE S BT

-2 % G¥ ()
X lJVJK 'Tj’
1+Hj’ N,k

e e G e
T=2u 1™ i 1-2us (14
1-2u " G

X——r )

1+ H?’M N,k

with i#j; i,jzl,_n for Fig. 1, (Fig. 8) and
i,j=2,n for Fig. 2-4, (5-7), then there is an
equivalent Maxwell (Kelvin) model to it.

The proof of this theorem as well as Theorem 1
is constructive. We describe the construction of
transfer equations for these models. They are
obtained by using the transfer equations for one-
dimensional models. For example, suppose you
must find a model of Maxwell, which is equiva-
lent to Kelvin model with parameters

k kK ek koK ko Vi y
G]:"'5 Gn’ H]e 5 tey l"lfl ,n]""ann’ l’l] 3"'7“2
We write the transfer equations for a one-
dimensional model having the same block dia-
gram as

M k k k k
T T S < - —
pl gl(p] p 1 1 i=1,n. (15)

6 = S o e e )

Then, considering that (13). (15) hold, we obtain

1
GM =Egi(2G]", 2GS 20, )

1

: (16)
w =L Gt 268 2nt et
e,M _lgi(p]*’K:'--: p:’Mﬂ kl*’K"“’ k:,K)_zGiK

*

2 g(pt oM L R+ GM
vor _ LI e oM R k)= 2m)
L2 S M )

ok 2G/ (1 +u§’<) s 2nf (1% )

1-2p7 1-2p;

i

Conclusions

Thus, for multiple Kelvin and Maxwell models
we have established their equivalences in a one-
dimensional case and sufficient conditions have
been presented for its validity in a three-
dimensional case. The transfer equations from
one type model to another have been found in an
explicit form.
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