УДК 629.017

ИЗМЕНЕНИЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ МОТОРНОГО МАСЛА ПОД СОВМЕСТНЫМ ВОЗДЕЙСТВИЕМ РАЗНЫХ ВИДОВ ЗАГРЯЗНЕНИЙ

И.С. Наглюк, доцент, к.т.н., ХНАДУ, А.Б. Григоров, ассистент, к.т.н., НТУ «ХПИ»

Аннотация. Приведены результаты совместного воздействия разных видов загрязнений на величину диэлектрической проницаемости моторного масла ESSOLUB XT4 SAE 15W-40 (API CF-4). Получены уравнения регрессии, позволяющие оценить диэлектрическую проницаемость масла при известной концентрации загрязнений.

Ключевые слова: моторное масло, загрязнение, диэлектрические свойства, совместное воздействие, концентрация загрязнений.

ЗМІНА ДІЕЛЕКТРИЧНИХ ВЛАСТИВОСТЕЙ МОТОРНОЇ ОЛИВИ ПІД СПІЛЬНИМ ВПЛИВОМ РІЗНИХ ВИДІВ ЗАБРУДНЕНЬ

І.С. Наглюк, доцент, к.т.н., ХНАДУ, А.Б. Григоров, асистент, к.т.н., НТУ «ХПІ»

Анотація. Наведено результати спільного впливу різних видів забруднень на величину дієлектричної проникності моторної оливи ESSOLUB XT4 SAE 15 W-40 (API CF-4). Отримано рівняння регресії, що дозволяють оцінити дієлектричну проникність оливи за відомої концентрації забруднень.

Ключові слова: моторна олива, забруднення, діелектричні властивості, спільний вплив, концентрація забруднень.

CHANGE OF DIELECTRIC PROPERTIES OF MOTOR OIL UNDER JOINT INFLUENCE OF DIFFERENT KINDS OF POLLUTION

I. Nahliuk, Associate Professor, Candidate of Technical Science, KhNAHU, A. Hryhorov, assistant, Candidate of Technical Science, NTU «KhPI»

Abstract. The results of joint influence of different kinds of pollution on the size of dielectric permeability of ESSOLUB XT4 SAE 15W-40 (API CF-4) motor oil are presented. The equation of regress allowing to estimate dielectric permeability of oil at determined pollution concentration is obtained.

Key words: motor oil, pollution, dielectric properties, joint influence, concentration of pollution.

Введение

Содержащиеся в моторных маслах загрязнения попадают в них при производстве, транспортировке и хранении, однако основная их часть накапливается в маслах при эксплуатации автомобилей. Загрязненность масел во время эксплуатации транспортных машин является одной из основных причин, обуславливающей, с одной стороны, преждевременное исчерпание потенциала физикохимических свойств масла, с другой — снижение ресурса агрегата, в котором используется масло.

Анализ публикаций

Диэлектрические свойства масел являются одними из основных свойств, по которым оценивают их качество и пригодность к дальнейшей эксплуатации. Чаще всего диэлектрические свойства масел оценивают по таким показателям, как тангенс угла диэлектрических потерь tgδ и диэлектрическая проницаемость ε. Так, авторы [1] исследовали возможность использования для контроля вязкости масла метода диэлектрической спектроскопии (по величине tgδ). Метод диэлектрической спектроскопии также приме-

нялся для определения кислотного числа и концентрации продуктов износа, трущихся деталей в отработанном масле [2]. Использование параметра относительной диэлектрической проницаемости заложено в принципе действия диэлькометрического метода определения содержания воды в топливах и маслах (ГОСТ 14203). Контроль степени загрязненности автомобильных масел в процессе эксплуатации в работе [3] предлагается осуществлять на основании параметра є. По величине є масла можно судить о том, от каких конкретных загрязнений можно избавиться в процессе фильтрации масел с использованием сильных электрических полей.

Цель и постановка задачи

Практическое применение є для определения качества моторных масел получило более широкое применение, по сравнению с tgδ, ввиду того, что измеряемая є моторного масла является комплексным параметром, величина которого обусловлена как продуктами окисления масла, так и частицами загрязнений. Параметр є в гораздо меньшей степени зависит от температуры, при которой производятся измерения, чем tgδ. Поэтому в дальнейшем более детально рассмотрим влияние различных видов загрязнений на параметр є моторного масла.

В работающем моторном масле одновременно могут находиться несколько видов загрязнений, которые оказывают разнообразное влияние на величину его є. Влияние разных видов загрязнений на є моторного масла уже рассматривалось в работе [4], но вопрос о совместном их влиянии остается открытым.

Экспериментальные исследования

В лабораторных условиях в чистое масло (ESSOLUB XT4 SAE 15W-40 (API CF-4)) добавлялись наиболее часто встречающиеся в работающих маслах загрязнения: частички железа, сажи, запыленности и воды. Диапазон концентраций вводимых в масло загрязнений варьировался от нулевой концентрации, соответствующей свежему маслу, до предельного значения, часто наблюдаемого у работающих: железо $(0\div150~\text{г/т})$; сажа $(0\div1,5\%$ (масс.)); вода $(0\div0,3\%$ (масс.)); частички запыленности $(0\div20~\text{г/т})$. Размер вводимых в масло частиц запыленности и железа колебался в пределах $1\div5$ и $2\div10$ мкм соответственно, что вполне

соответствует размеру частиц, которые встречаются в реальных работающих маслах [5, 6]. Частицы сажи получали путем сжигания дизельного топлива в керосиновой лампе (ГОСТ 305) с последующим их улавливанием на металлическую пластину. Металлические частицы и сажа вводились в масла небольшими порциями и тщательно диспергировались по объему проб ультразвуком частотой 20–50 кГц в течение 2–3 ч. Что касается воды, то она вводилась в масло постепенно при тщательном перемешивании посредством высокоскоростной мешалки в течение 3 ч.

Предположив, что между загрязнениями в масле отсутствует химическое взаимодействие, а их накопление происходит постепенно, уравнение, описывающее изменение є масла от накопления в нем загрязнений, имеет линейный вид

$$\varepsilon = b_0 + b_1 X_{\text{Fe}} + b_2 X_{\text{C}} + b_3 X_{\text{H}_2\text{O}} + b_4 X_{\text{SiO}_2},$$
 (1)

где b_0 — свободный член уравнения регрессии; b_1 , b_2 , b_3 , b_4 — коэффициенты уравнения регрессии; $X_{\rm Fe}$ — содержание в масле частиц железа, г/т; $X_{\rm C}$ — содержание в масле частиц сажи, % (масс.); $X_{\rm H_2O}$ — содержание в масле воды, % (масс.); $X_{\rm SiO_2}$ — содержание в масле частичек запыленности, г/т.

С учетом полученного свободного члена и коэффициентов уравнение линейной регрессии (1) примет следующий вид

$$\varepsilon = 2,4090 + 0,0005X_{Fe} + 0,0918X_{C} + +0,1022X_{H_{2}O} - 0,0013X_{SiO_{2}}.$$
 (2)

Влияние рассмотренных загрязнений на величину параметра приращения диэлектрической проницаемости $\Delta \epsilon$ описывается уравнением регрессии, аналогичным уравнению (1), только без свободного члена b_0 . Отсутствие свободного члена в уравнении линейной регрессии объясняется тем, что в исходном масле $X_{\rm Fe} \to 0$, $X_{\rm C} \to 0$, $X_{\rm H_2O} \to 0$, $X_{\rm SiO_2} \to 0$, а в этом случае величина параметра $\Delta \epsilon \to 0$ и свободный член b_0 является статистически не значимым. С учетом полученных коэффициентов уравнение линейной регрессии, описывающей изменение величину $\Delta \epsilon$ масла от накопления в нем загрязнений, примет следующий вид

$$\Delta \varepsilon = 0,0005 X_{\text{Fe}} + 0,0929 X_{\text{C}} + +0,0953 X_{\text{H}_2\text{O}} - 0,0014 X_{\text{SiO}_2}.$$
 (3)

Коэффициент множественной корреляции, характеризующий тесноту связи между переменными и параметрами ε и $\Delta \varepsilon$, а также являющийся оценкой качества предсказания [7], принял высокие значения R=0,9853. Расчет коэффициентов частных корреляций позволяет ранжировать переменные по степени влияния на величину ε и $\Delta \varepsilon$ в следующем порядке: $X_{\rm C}$, $X_{\rm Fe}$, $X_{\rm H_2O}$, $X_{\rm SiO_2}$, причем влияние переменной $X_{\rm C}$ и $X_{\rm Fe}$ — сильное ($R=0,92\div0,98$), а переменных $X_{\rm H_2O}$ и $X_{\rm SiO_2}$ — умеренное (R=0,71). Ошибка расчета параметра $\Delta \varepsilon$ по линейному уравнению регрессии (3) составляет $7,4\div8,7$ %.

Влияние каждой пары загрязнений на величину параметра Δε описывается линейными уравнениями регрессии следующего вида:

$$\Delta \varepsilon = 0.0912 X_{\rm C} + 0.0005 X_{\rm Fe};$$
 (4)

$$\Delta \varepsilon = 0.0764 X_{\text{H}_2\text{O}} + 0.0005 X_{\text{Fe}};$$
 (5)

$$\Delta \varepsilon = 0.0009 X_{\text{SiO}_2} + 0.0006 X_{\text{Fe}};$$
 (6)

$$\Delta \varepsilon = 0.1270 X_{\text{H}_2\text{O}} + 0.0951 X_{\text{C}};$$
 (7)

$$\Delta \varepsilon = 0.0006 X_{\text{SiO}_2} + 0.1297 X_{\text{H}_2\text{O}};$$
 (8)

$$\Delta \varepsilon = 0.0009 X_{SiO_2} + 0.0959 X_C$$
. (9)

Ошибка расчета параметра $\Delta \varepsilon$ по линейным уравнениям регрессии (4)–(9) составляет 7,8÷8,9 %.

Выводы

Определив вид и концентрацию загрязнений, содержащихся в работавшем моторном масле, используя полученные результаты, можно проранжировать их по степени влияния на величину є моторного масла.

Однако полученные уравнения справедливы лишь в исследуемом диапазоне концентраций загрязнений и требует дальнейших исследований.

Литература

- 1. Ханмамедов С.А. Связь диэлектрических и вязкостных характеристик турбинных смазочных масел / С.А. Ханмамедов, А.М. Бардецкий // Химия и технология топлив и масел. -1988. -№ 5. C. 21-22.
- 2. А. с. 1566291 СССР. МКNG 01. Способ определения качества смазочного масла / А.М. Бардецкий, С.А. Ханмамедов. № 33/30; заявл 05.10.89; опубл. 23.05.90, Бюл. № 19.
- 3. Золотов В.А. Научно-методические основы прогнозирования периодичности смены моторных масел в двигателях / В.А. Золотов // Трение, износ, смазка. 2008. № 3. С. 71—79.
- 4. Григоров А.Б. Влияние загрязнений моторных масел в процессе эксплуатации на величину изменения их относительной диэлектрической проницаемости / А.Б. Григоров // Вестник национального технического университета «ХПИ». 2007. № 32. С. 133—138.
- 5. Григорьев М.А. Очистка масла в двигателях внутреннего сгорания / М.А. Григорьев. М.: Машиностроение, 1983. 148 с.
- Морозов Г.А. Очистка масел в дизелях / Г.А. Морозов, О.М. Арцимонов. – Л.: Машиностроение, 1971. – 192 с.
- 7. STATISTICA 6. Статистический анализ данных / сост. А.А. Халафян. М.: OOO «Бином-Пресс», 2007. 512 с.

Рецензент: А.С. Полянский, профессор, д.т.н., XHAДУ.

Статья поступила в редакцию 23 июня 2011 г.