ВОССТАНОВЛЕНИЕ СВИНЦОВЫХ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ ТРЕНИРОВОЧНЫМ ЦИКЛИРОВАНИЕМ РАЗРЯД-ЗАРЯД

А.В. Бажинов, профессор, д.т.н, А.С. Паникарский, доцент, к.т.н., ХНАДУ, В.В. Данков, инж., А.И Черных, инж., С.Д. Дылев, инж., ООО «APS»

Аннотация. Рассмотрен модифицированный способ восстановления свинцовых автомобильных аккумуляторов ступенчатым тренировочным циклированием разряд-заряд.

Ключевые слова: экологическая обстановка, аккумуляторная батарея, гибридный автомобиль.

ВІДНОВЛЕННЯ СВИНЦЕВИХ АВТОМОБІЛЬНИХ АКУМУЛЯТОРІВ ТРЕНУВАЛЬНИМ ЦИКЛУВАННЯМ РОЗРЯД-ЗАРЯД

О.В. Бажинов, професор, д.т.н, О.С. Панікарський, доцент, к.т.н., ХНАДУ, В.В. Данков, інж., А.І. Черних, інж., С.Д. Дилев, інж., ТОВ «APS»

Анотація. Розглянутий модифікований спосіб відновлення свинцевих автомобільних акумуляторів ступінчатим тренувальним циклюванням розряд-заряд.

Ключові слова: екологічне довкілля, акумуляторна батарея, гібридний автомобіль.

THE METHOD OF REGENERATION AUTOMOBILE LEAD-ACID BATTERY BY TRAINING CHARGE- DISCHARGE CYCLING

A. Bazhinov, professor, dr. eng. sc., A. Panikarski, assistant professor, cand. eng. sc., KhNAHU, V. Dankov, engineer, A.Tchernih, engineer, S.Dilev, engineer, Ltd. «APS»

Abstract. Consideration the method of regeneration automobile lead-acid battery by stepped training charge-discharge cycling.

Keywords: preservation of the environment, lead-acid battery, hybrid automobile.

Вступление

Борьба за сохранение и улучшение экологической обстановки заключается не только в уменьшении потребления энергоресурсов, но и в уменьшении объемов экологически вредных производств. Одним из таких производств является производство свинцовых аккумуляторов.

Интерес к использованию стартерных свинцовых аккумуляторов, несмотря на бурное распространение литиевых, обусловлен их относительной дешевизной. Следует перечислить факторы, обуславливающие расши-

рение производства свинцовых стартерных аккумуляторов:

- 1) увеличение количества автомобилей;
- 2) использование стартерных свинцовых аккумуляторов в альтернативных источниках электроэнергии;
- 3) перспективное использование стартерных аккумуляторов в гибридном грузовом транспорте для доставки грузов от производителя до склада продавца.

Цель работы

Целью данной работы является разработка мероприятий по улучшению эксплуатацион-

ных свойств свинцовых аккумуляторов и продление срока их эксплуатации.

Одной из причин преждевременного выхода из строя аккумуляторов является образование трудно растворимых соединений на поверхности пластин или, как говорят в просторечии, «сульфатации».

Технология изготовления свинцовых аккумуляторов достигла в настоящее время определённого уровня совершенства. То пути повышения срока службы, как указано в работе [1], заключаются «в использовании внешних факторов, способствующих повышению прони -цаемости сульфатных плёнок и улучшению конвективно-диффузионных условий в порах активных масс».

Обзор существующих решений

Одним из способов десульфатации является добавление в электролит реагентов, например, бисульфат натрия [1 с.172], которые помогают растворению плёнки, препятствующей прохождению процесса массопереноса соединений свинца. Однако этот метод может привести к расходу активной массы электрода и уменьшению емкости, а также к инициации роста дендридов и, в дальнейшем, к короткому замыканию.

Другой способ-заряд аккумулятора импульсным током со скважностью 1/3 направлен на разрушение сульфатной пленки и также ведет к уменьшению активной массы электродов (серия зарядных устройств «АИДА»). Мы считаем, что третий способ — это тренировочные циклы заряд-разряд являются более надёжным способом восстановления аккумуляторов, так как направлен на растворение сульфатной пленки.

Тем не менее использование стандартного полного 20-часового цикла разряд-зарядразряд до напряжения 10,5 В является неправомерным, т.к. вызывает понижение разрядного напряжения в одной из банок, и, как следствие, уменьшение плотности электролита относительно остальных до $\Delta \rho = 0,03 \text{ г/см}^3$. Это отрицательно сказывается на ёмкости аккумулятора.

Предложенный метод решения задачи

В работе предлагается метод ступенчатого

разряда и заряда аккумулятора, устраняющий значительную долю сульфатации. В качестве экспериментального материала были выбраны 4 наливных аккумулятора «Varta-110» возрастом 6 лет.

Два аккумулятора находились на хранении и ежегодно один раз заряжались до 100% ёмкости. Один аккумулятор эксплуатировался 3 года, во время эксплуатации не подзаряжался. Бортовое реле-регулятор контактнотранзисторного типа, напряжение 13,8÷14,2 В. Далее при хранении подзаряжался раз в год до 100% ёмкости.

Ещё один аккумулятор эксплуа- тировался 3 года, но во время эксплуатации заряд постоянно поддерживался 100% ёмкости (ЕДС 12,6÷12,7 В).

Суть предложенного метода заключается в том, чтобы задействовать кристаллы сульфатной плёнки с большим сопротивлением в химической реакции, сопровождающейся отдачей электро -энергии, разряд производим на начальной стадии током меньше $0,05\ C_{20}$ (где C_{20} – ёмкость при 20-часовом разряде), а затем током, близким к $0,1\ C_{20}$ до напряжения $10,5\ B$. Заряд производим током меньше, чем $0,05\ C_{20}$. В конце заряда производим уравнительный «дозаряд» напряжением не более $16\ B$ до достижения разброса плотности электролита в элементах не более $\Delta \rho = 0,02\ \text{г/см}^3$ при конечной плотности электролита $\rho = 1,25\div1,27\ \text{г/см}^3$.

В литературе отсутствуют описание сравнительных испытаний аккумуляторов по стандартному тренировочному циклу и модифицированному ступенчатому.

Эксперимент проводился совместно с ООО APS г. Харьков на базе лаборатории гибридных автомобилей кафедры Автомобильной электроники в рамках программы создания экологически чистых транспортных средств.

Для начала каждый аккумулятор был заряжен до максимальной емкости, которая контролировалась по плотности электролита $\rho = 1,25 \div 1,27$ г/см³ и достижения ЕДС = 12,65 ÷ 12,7 В. Затем был произведен разряд током 25 А до напряжения 10,5 В. Испытания током 25 А на резервную емкость [2,3] (резервная емкость — это время движения автомобиля в ночное время с включён-

ным освещением и выключенным генератором) более информативно о наличии сульфатной плёнки, увеличивающей внутреннее сопротивление, чем режим 20-часового разряда.

Затем один аккумулятор из хранения и один из эксплуатации заряжали методом ступенчатого стабилизированного напряжения током меньше $0.05\ C_{20}$ с помощью установки 63BM-4/12-1, а затем разрядили ступенчатым током сперва $0.05\ C_{20}$, а затем в конце больше чем $0.05\ C_{20}$. Достигнув напряжения $10.5\ B$ снова перешли на заряд методом ступенчатого стабилизированного напряжения в конце заряда осуществлялся выравнивающий «дозаряд» напряжением $15.6\ B$. В итоге был снова проведен контрольный разряд током $25\ A$ до напряжения $10.5\ B$.

Другая пара аккумуляторов заряжалась и разряжалась током 0,05 C_{20} в конце заряда использовался выравнивающий заряд при постоянном напряжении 16 В до достижения разброса по ячейкам не более $\Delta 0,02$ г/см³ и конечной плотности электролита $1,25 \div 1,27$ г/см³. В конце был проведен контрольный разряд током 25 А до напряжения 10,5 В. Для ступенчатого разряда-заряда использовали блок зарядно-восстановительный 63BM — 4/12-1, разработанный OOO APS, который может осуществлять восстановление одновременно четырех аккумуляторов, причем каждого независимо друг от друга.

Рис.1. Внешний вид блока БЗВМ – 4/12-1

Во всех случаях контрольный разряд стабилизированным током 25 A проводился с помощью блока БЗВМ -4/12-1.

<u>Таблица 1</u> Краткие технические характеристики блока БЗВМ – 4/12-1

Наименование параметра	Значение		
Входное напряжение	187B ÷ 254B, 50Гц		
Диапазон рабочего выход-	107В : 254В, 501Ц		
ного напряжения в режиме			
работы с АБ (зависит от	10,8 ÷ 15,7 B		
типа АБ)			
Диапазон ручной подстрой-			
ки тока в режиме контроль-	1,0 ÷ 25,0 A		
ного разряда			
Уровень ограничения про-			
должительного выходного	12,0 A		
тока			
F-5	225 x 185 × 310		
Габариты	$(\text{III} \times \text{B} \times \Gamma)$		
Bec	7,5 кг		
	продолжительный		
Режим работы, охлаждение	воздушное прину-		
	дительное		
	Клавиатура на пе-		
Оперативное управление	редней панели		
	блока		
	Цифровой порт с		
Дистанционное управление	гальванической		
Дистанционное управление	развязкой		
	USB 2.0 и RS-485		

Для заряда по классическому циклу применялся стабилизированный источник питания СИП-30 сначала в режиме источника тока, а затем в режиме источника напряжения.

Таблица 2 Результаты эксперимента

№	Режим экс- плуатации	Начальная емкость разряд 25 A	Коне- чная емкость	Δ%, изм. Емко-сти к конечн. знач.
1	Эксп. – 3 года Хран. 3 года подзаряд 100% С по- стоян-но	29	79	63 Ступ. разр заряд
2	Хран. 6 лет	64	89	28 Ступ. разр заряд-
3	Эксп. – 3 года Хран. 3 года	72	87	17 Класс. разр заряд-
4	Хран. 6 лет	82	93	12 Класс. разр заряд

Анализ результатов

Из таблицы видно, что ступенчатый разряд даёт большую эффективность по сравнению со стандартным циклом заряд-разряд током 0,05 С20. По нашему предположению происходит частичное растворение сульфатной плёнки малым током и превращение её в островковую структуру, а затем отрыв оставшихся островков под воздействием большого тока. Конечно, это приводит к уменьшению активной массы. Тем не менее, потери активной массы меньше чем при применении химических реагентов, например, «модификатор Омега», он же Трилон-Б, он же Na₂SO₄, который, вступая в реакцию с PbSO₄, вызывает оплывание плёнки в виде шлама и уменьшает активную массу электрода. Следовательно, емкость восстановленного аккумулятора с помощью Na₂SO₄ падает постоянно, что исключено в нашем случае.

Классический метод разряда-заряда током 0,05 С уступает ступенчатому методу по следующей причине. Это более глубокий разряд на конечной стадии и как следствие больший разброс плотности электролита по ячейкам. Для выравнивания приходится применять «дозаряд» при повышенном напряжении, а он в свою очередь приводит к перезаряду некоторых ячеек и, следовательно, снова к сульфатации, хотя динамика процесса восстановления в обоих случаях приводит к увеличению реальной емкости. Метод ступенчатого заряда и разряда в итоге даёт увеличение восстановленной емкости не менее, чем на 16% больше. чем классический.

Выводы

1. Пути усовершенствования алгоритмов работы зарядно-восстановительных устройств для свинцовых аккумуляторов не исчерпаны и тому свидетельство разработанный прибор

- БЗВМ 4/12-1 для ступенчатого зарядаразряда аккумуляторов, имеющий лучшие показатели по сравнению с классическим методом.
- 2. Не следует увлекаться усиленным зарядом АКБ до 100% емкости, это ведет к перезаряду и сульфатации аккумулятора (пример, аккумулятор из эксплуатации № 1). АКБ должна быть заряжена не более, чем на 90% и не разряжаться менее 50%. Поэтому важно при эксплуатации поддерживать напряжение бортовой сети реле-регулятором в пределах 13,6-13,8 В.
- 3. Рекомендуем при послегарантийном обслуживании, в случае если напряжение на заряженном аккумуляторе во время первичного пуска падает ниже 7,5 В, проводить восстановительное обслуживание ступенчатым разрядом-зарядом с периодичностью один раз в квартал.

Литература

- 1. В.Н. Варыпаев, М.А. Дасоян, В.А. Никольский. Химические источники тока., под. ред. В. Н. Варыпаева, Москва, «Высшая школа» 1990.
- 2. Н.И. Курзуков, В.М. Ягнятинский. Аккумуляторные батареи. Краткий справочник. М., ООО Книжное издательство «За рулем», 2006, 88С.
- 3. С.В. Акимов, Ю.П. Чижков. Электро- оборудование автомобилей. Учебник для ВУЗов, М., ООО Книжное издательство «За рулем», 2005, 336 С,.

Рецензент: А.Б. Богаевский, д.т.н., профессор ХНАДУ.

Статья поступила в редакцию 18 октября 2013 г.