МАШИНОСТРОЕНИЕ

УДК 621.318

РАСЧЕТ ЭЛЕКТРОДИНАМИЧЕСКИХ ПРОЦЕССОВ В СОГЛАСУЮЩЕМ УСТРОЙСТВЕ ЦИЛИНДРИЧЕСКОГО ТИПА С ДВУМЯ РАЗОМКНУТЫМИ ВТОРИЧНЫМИ ВИТКАМИ

Ю.В. Батыгин, профессор, д.т.н., А.В. Гнатов, доцент, к.т.н., И.С. Трунова, аспирант, ХНАДУ

Аннотация. Проведен анализ электродинамических процессов в цилиндрическом согласующем устройстве с двойным вторичным разомкнутым витком. Раскрыто решение краевой электродинамической задачи для рассматриваемого согласующего устройства и получены аналитические выражения для индуцированных токов в цилиндрах вторичного витка.

Ключевые слова: магнитно-импульсная обработка металлов, согласующее устройство, импульсный трансформатор тока, индуцированные токи.

РОЗРАХУНОК ЕЛЕКТРОДИНАМІЧНИХ ПРОЦЕСІВ В УЗГОДЖУВАЛЬНОМУ ПРИСТРОЇ ЦИЛІНДРИЧНОГО ТИПУ З ДВОМА РОЗІМКНЕНИМИ ВТОРИННИМИ ВИТКАМИ

Ю.В. Батигін, професор, д.т.н., А.В. Гнатов, доцент, к.т.н., І.С. Трунова, аспірант, ХНАДУ

Анотація. Проведено аналіз електродинамічних процесів у циліндричному узгоджувальному пристрої з подвійним вторинним розімкненим витком. Розкрито розв'язок крайової електродинамічної задачі для узгоджувального пристрою, що розглядається, та отримано аналітичні вирази для індукованих струмів у циліндрах вторинного витка.

Ключові слова: магнітно-імпульсна обробка металів, узгоджувальний пристрій, імпульсний трансформатор струму, індуковані струми.

THE CALCULATION OF ELECTRODYNAMICAL PROCESSES IN THE CYLINDRICAL MATCHING DEVICE WITH DOUBLE SECONDARY DISCLOSED COILS

Yu. Batygin, Professor, Doctor of Technical Sciences, A. Gnatov, Assistant Professor, Candidate of Technical Sciences, I. Trunova, postgraduate, KhNAHU

Abstract. The analysis of electrodynamic processes in the cylindrical matching device with a double secondary disclosed coil has been performed. The solution of a boundary electrodynamic problem for the studied matching device has been found. Analytical expressions for induced currents in cylinders of the secondary coil have been obtained.

Key worlds: magnetic-pulse metal forming, matching device, impulse current transformer, induced current.

Введение

В наше время представляются актуальными и перспективными разработки с использованием энергии электромагнитных полей в практике реставрации поврежденных кузовных покрытий автомобилей и корпусов самолетов. В автомобильной промышленности, согласно статистике, 50 % из небольших и средних повреждений приходится на вмятины, которые возможно устранить с помощью рихтовки, и тогда исчезает потребность обязательной замены всего элемента. Большинство этих повреждений приходится на участ-

ки с частичным или полностью закрытым доступом с внутренней стороны элемента, который подлежит рихтовке. Это разные корпусные части автомобилей: двери, крыши, капоты, задние части автомобилей, пороги, арки и другие. Этот факт подтверждает актуальность и потребность в осуществлении разработок различных технических систем и устройств, которые позволяют производить внешнюю рихтовку без разборки корпуса или кузова автомобиля и без нарушения существующего защитного покрытия [1]. К таким устройствам в полной мере можно отнести импульсные трансформаторы тока согласующие устройства [2]. Данные устройства применяют в практике магнитноимпульсной обработки металлов для повышения уровня энергии, передаваемой от мощных импульсных электрофизических установок в малоиндуктивные нагрузки.

Анализ публикаций

Согласующие устройства можно поделить по конструктивному исполнению на дисковые плоские, цилиндрические коаксиальные и др. (специальные конструкции) [1, 2]. В [3, 4] описываются конструктивные особенности плоских дисковых импульсных трансформаторов тока. Причем в [4] приводится анализ существующих конструкций импульсных трансформаторов, предназначенных для получения больших токов – порядка единиц и десятков мегампер.

Конструкция согласующего устройства с первичной обмоткой в виде цилиндрической спирали и вторичной обмоткой, представляющей собой полый металлический цилиндр с продольным разрезом (рис.1, а), описана, например, в известной монографии [5]. К достоинствам таких согласующих устройств можно отнести более высокий уровень индуктивной связи между первичной и вторичной обмотками по сравнению с плоскими вариантами устройств аналогичного назначения. Тем не менее, и в отмеченной конструкции согласующего трансформатора значительная часть электромагнитной энергии всё же будет рассеиваться в пространстве вне первичной обмотки. Из физических соображений очевидно, что понизить уровень рассеиваемой энергии можно, если вторичный виток выполнить в виде двух коаксиальных полых цилиндров, а первичную многовитковую обмотку разместить между ними (рис.1, б). На выходе к нагрузке (индукторной системе) по краям продольных разрезов цилиндры соединены электрически так, чтобы суммировались токи, индуцированные в каждом из них. В дальнейшем эту конструкцию вторичного витка будем называть двойным вторичным витком.

Авторским коллективом лаборатории электромагнитных технологий Харьковского национального автомобильно-дорожного университета разработан целый ряд согласующих устройств, использование которых позволило выполнять ранее трудно реализуемые, а порой и невозможные технологические операции по восстановлению (удалению вмятин, прогибов, деформаций) тонкостенных листовых металлов [6].

Рис. 1. Цилиндрический согласующий трансформатор: а – вторичный виток – полый цилиндр с продольным разрезом внутри первичной многовитковой обмотки; б – вторичный виток – два коаксиальных полых цилиндра, между которыми размещается первичная многовитковая обмотка (поперечное сечение)

Цель и постановка задачи

Цель настоящей работы – теоретическое обоснование работоспособности и возможностей цилиндрического согласующего трансформатора с двойным вторичным витком в качестве промежуточного преобразователя между источником мощности и инструментоминдуктором в магнитно-импульсной обработке металлов.

Поставленная цель требует решения краевой электродинамической задачи для модели на

рис.1, б, принимаемой в качестве расчётной и соответствующей геометрии поперечного сечения предлагаемой конструкции. Решение проводится в цилиндрической системе координат с осью ОZ по нормали к плоскости чертежа, радиальные переменные – по радиусу цилиндров.

Следует отметить, что подобная задача рассматривалась в работе [7], но её результаты не позволяют ответить на возникающие вопросы и могут служить лишь контрольными ориентирами в настоящем рассмотрении.

Сформулируем принимаемые допущения:

 – цилиндры двойного вторичного витка выполнены из одинаковых металлов с удельной электропроводностью – γ;

– продольный – ℓ и радиальные размеры – $R_{1,2,3,4}$ рассматриваемой системы достаточно

велики, так что
$$\frac{d_1}{R_{1,4}} << 1, \frac{d_2}{R_{1,4}} << 1, \frac{h}{R_{1,4}} << 1,$$

где $d_{1,2}$ – толщина внутреннего и внешнего цилиндров двойного вторичного витка соответственно, а h – расстояние между ними, полностью заполненное металлом первичной обмотки с числом витков – w;

 наличием продольных разрезов в коаксиальных цилиндрах пренебрегаем и полагаем, что система аксиально симметрична, так что д

 $\frac{\partial}{\partial \phi} \approx 0$ (ϕ – азимутальный угол);

– имеет место лишь азимутальная составляющая плотности тока в индукторе, $J(t) = J_m \cdot j(t), J_m$ – амплитуда, j(t) – временная зависимость;

– электромагнитные процессы удовлетворяют условию квазистационарности, $\frac{\omega}{c} \cdot \ell << 1$, где ω – характерная циклическая частота, c – скорость света в вакууме, ℓ – наибольший характерный геометрический размер в системе.

При решении поставленной задачи согласно расчётной модели на рис. 1, б выделим следующие области.

1. Внутренняя полость, $r \in [0, R_1]$.

2. Металл внутреннего цилиндра, $r \in [R_1, R_2]$.

Вестник ХНАДУ, вып. 56, 2012

металлом первичной многовитковой обмотки, $r \in [R_2, R_3]$.

- 4. Металл внешнего цилиндра, $r \in [R_3, R_4]$.
- 5. Свободное пространство вне системы, $r \in [R_4, \infty)$.

Электромагнитные процессы в рассматриваемой системе описываются уравнениями Максвелла для ненулевых компонент вектора напряжённости электрического и магнитного полей $E_{\phi}(r,t) \neq 0$, $H_z(r,t) \neq 0$

$$\left(\frac{1}{r}\cdot\frac{\partial}{\partial r}\left(r\cdot E_{\varphi}\left(p,r\right)\right) = -\mu_{0}\cdot p\cdot H_{z}\left(p,r\right); \quad (1)$$

$$\int -\frac{\partial H_z(p,r)}{\partial r} = p \cdot \varepsilon_0 \cdot E_{\varphi}(p,r) \text{ (вакуум); (2)}$$

$$\left(-\frac{\partial H_{z}(p,r)}{\partial r} = \gamma \cdot E_{\varphi}(p,r) \text{ (металл)}; \quad (3)\right)$$

где p – параметр преобразования Лапласа; μ_0, ε_0 – магнитная и диэлектрическая проницаемости свободного пространства;

$$E_{\varphi}(p,r) = L\{E_{\varphi}(t,r)\}; H_{z}(p,r) = L\{H_{z}(t,r)\}.$$

Дифференциальная система дополняется условиями связи для компонент векторов поля на границах выделенных областей.

$$r = R_{1} : E_{\phi}^{(1)}(r = R_{1}, t) = E_{\phi}^{(2)}(r = R_{1}, t);$$

$$H_{z}^{(1)}(r = R_{1}, t) = H_{z}^{(2)}(r = R_{1}, t).$$
(4)

$$r = R_{2,3}: E_{\phi}^{(2)}(r = R_2, t) \approx -E_{\phi}^{(3)}(r = R_3, t);$$
$$H_z^{(2)}(r = R_2, t) + H_z^{(3)}(r = R_3, t) \approx \left(\frac{J(p)w}{\ell}\right).$$
(5)

$$r = R_4 : E_{\phi}^{(3)}(r = R_4, t) = E_{\phi}^{(4)}(r = R_4, t) .$$
 (6)

Система (1–3) в разных средах приводится к соответствующим дифференциальным уравнениям для напряжённости электрического поля

$$\frac{\partial}{\partial r} \left(\frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot E_{\varphi} \left(p, r \right) \right) \right) - -k_{1,2}^{2}(p) \cdot E_{\varphi} \left(p, r \right) = 0, \qquad (7)$$

где $k_1(p)$ – волновое число в металле, $k_1(p) = \sqrt{p\mu_0 \gamma}$; $k_2(p)$ – волновое число в вакууме, $k_2(p) = \frac{p}{c}$, c – скорость света в вакууме.

Общий интеграл уравнения (7) для напряжённости электрического поля в металле внутреннего цилиндра вторичного витка, область $r \in [R_1, R_2]$, запишется в виде [8]

$$E_{\varphi}^{(2)}(p,r) = C_1(p) \cdot I_1(k_1(p) \cdot r) + + D_1(p) \cdot K_1(k_1(p) \cdot r),$$
(8)

где $I_1(z), K_1(z)$ – модифицированные функции Бесселя первого порядка, $C_1(p), D_1(p)$ – произвольные постоянные интегрирования. Аналогично для металла внешнего цилиндра – область $r \in [R_3, R_4]$

$$E_{\varphi}^{(3)}(p,r) = C_2(p) \cdot I_1(k_1(p) \cdot r) + + D_2(p) \cdot K_1(k_1(p) \cdot r),$$
(9)

где $C_2(p)$, $D_2(p)$ – произвольные постоянные интегрирования.

В вакууме волновое число для реальных рабочих частот магнитно-импульсной обработки металлов (до 50–70 кГц) [9] таково, что $\left| k_2^2(p) = \left(\frac{p}{c}\right)^2 \right| \rightarrow 0$. В пренебрежении сла-

гаемыми, содержащими данный множитель, уравнение (7) преобразуется к виду

$$\frac{\partial}{\partial r} \left(\frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot E_{\varphi}(p, r) \right) \right) \approx 0.$$
 (10)

Фундаментальная система решений уравнения (10) есть линейная комбинация степенных функций вида [8]

$$E_{\varphi}(p,r) = \frac{A_{1}(p)}{2} \cdot r + A_{2}(p) \cdot \frac{1}{r}, \quad (11)$$

где $A_{1,2}(p)$ – произвольные постоянные интегрирования.

Учитывая ограниченность напряжённости электрического поля во внутренней полости вторичного витка и вне его, записываем вы-

ражения для $E_{\varphi}(p,r)$ в каждой из указанных областей.

Так, для
$$r \in [0, R_1]$$

 $E_{\phi}^{(1)}(p, r) = \frac{A_1(p)}{2} \cdot r$.

Для $r \in [R_4, \infty)$

$$E_{\phi}^{(4)}(p,r) = A_2(p) \cdot \frac{1}{r}.$$
 (13)

С помощью уравнения (1) и выражений (8, 9, 12, 13) найдём Лапласовы изображения напряжённости магнитного поля в каждой из выделенных областей.

В металле внутреннего цилиндра вторичного витка, область $r \in [R_1, R_2]$

$$H_{z}^{(2)}(p,r) = -\sqrt{\frac{\gamma}{p \cdot \mu_{0}}} \cdot \left(C_{1}(p) \cdot I_{0}(k_{1}(p) \cdot r) - -D_{1}(p) \cdot K_{0}(k_{1}(p) \cdot r)\right), \quad (14)$$

где $I_0(z), K_0(z)$ – модифицированные функции Бесселя первого порядка.

Аналогично для металла внешнего цилиндра – область $r \in [R_3, R_4]$

$$H_{z}^{(3)}(p,r) = -\sqrt{\frac{\gamma}{p \cdot \mu_{0}}} \cdot \left(C_{2}(p) \cdot I_{0}(k_{1}(p) \cdot r) - D_{2}(p) \cdot K_{0}(k_{1}(p) \cdot r)\right).$$
(15)

Для *r*∈[0, *R*₁]

$$H_{z}^{(1)}(p,r) = -\frac{A_{1}(p)}{p \cdot \mu_{0}}.$$
 (16)

Независимость напряжённости магнитного поля от радиальной координаты во внутренней полости (16) согласуется с аналогичным результатом, полученным ранее авторами [7], и объясняется принятыми физическими условиями работы рассматриваемой электродинамической системы (10).

Для
$$r \in [R_4, \infty)$$

 $H_z^{(4)}(p, r) \approx 0.$ (17)

Достоверность (17) подтверждается выводами работ [1, 5 – 8], в соответствии с которыми касательная составляющая напряжённости магнитного поля плоской волны

(12)

практически не проникает сквозь металл в свободное полупространство. Возвращаясь к реальным условиям работы индукторных систем, последующие вычисления можно существенно упростить. Как было указано, рабочие частоты магнитно-импульсной обработки металлов не превышают ~ 50 – 70 кГц. Для наименьшего значения $f \sim 1$ кГц и реально возможных радиальных размеров рассматриваемой системы $R_1 \approx 0,025 - 0,25$ м справедлива оценка

$$\sqrt{\omega \cdot \mu_0 \cdot \gamma} \cdot R_1 >> 1$$
 и $|k_1(p) \cdot R_{1,2,3,4}| >> 1.$ (18)

С использованием асимптотических разложений модифицированных функций Бесселя, согласно (18), получаем следующие зависимости для компонент напряжённости электрического и магнитного полей в выделенных областях (постоянные величины, появляющиеся в процессе преобразований, включаем в константы интегрирования) [8]

a)
$$r \in [0, R_1]$$

$$E_{\varphi}^{(1)}(p, r) = \frac{A_1(p)}{2} \cdot r, \qquad (19)$$

$$H_{z}^{(1)}(p,r) = -\frac{A_{\rm I}(p)}{p \cdot \mu_{\rm 0}}; \qquad (20)$$

б) *r* ∈ [R_1, R_2]

$$E_{\varphi}^{(2)}(p,r) \approx \frac{1}{\sqrt{r}} \cdot \left(C_{1}(p) \cdot e^{k_{1}(p) \cdot r} + D_{1}(p) \cdot e^{-k_{1}(p) \cdot r} \right),$$
(21)

$$H_{z}^{(2)}(p,r) \approx -\frac{1}{\sqrt{r}} \cdot \sqrt{\frac{\gamma}{p \cdot \mu_{0}}} \times \left(C_{1}(p) \cdot e^{k_{1}(p) \cdot r} - D_{1}(p) \cdot e^{-k_{1}(p) \cdot r}\right); \quad (22)$$

B)
$$r \in [R_3, R_4]$$

 $E_{\phi}^{(3)}(p, r) \approx \frac{1}{\sqrt{r}} \cdot \left(C_2(p) \cdot e^{k_1(p) \cdot r} + D_2(p) \cdot e^{-k_1(p) \cdot r}\right),$ (23)

$$\begin{aligned} H_{z}^{(3)}(p,r) &\approx -\frac{1}{\sqrt{r}} \cdot \sqrt{\frac{\gamma}{p \cdot \mu_{0}}} \times \\ \times \Big(C_{2}(p) \cdot e^{k_{1}(p) \cdot r} - D_{2}(p) \cdot e^{-k_{1}(p) \cdot r} \Big); \quad (24) \end{aligned}$$

$$\Gamma) r \in [R_{4}, \infty)$$

$$E_{\varphi}^{(4)}(p,r) = A_2(p) \cdot \frac{1}{r}, \qquad (25)$$

$$H_z^{(4)}(p,r) \approx 0.$$
 (26)

В конечном итоге нас интересует возбуждение индуцированных токов в цилиндрах вторичного витка. Поэтому ограничимся отысканием лишь неизвестных произвольных постоянных интегрирования в выражениях для напряжённости электромагнитных полей в каждом из них – (21) и (23).

Необходимые зависимости из (19) – (26) подставим в граничные условия (4), (6). Получим алгебраическую систему уравнений относительно искомых $C_{1,2}(p), D_{1,2}(p)$. Уравнения расположим в порядке, удобном для определения неизвестных констант.

$$\left(C_{2}(p) \cdot e^{k_{1}(p) \cdot R_{4}} - D_{2}(p) \cdot e^{-k_{1}(p) \cdot R_{4}} \right) \approx 0 ; \quad (27)$$

$$\frac{1}{\sqrt{R_{1}}} \cdot \left(C_{1}(p) \cdot e^{k_{1}(p) \cdot R_{1}} + D_{1}(p) \cdot e^{-k_{1}(p) \cdot R_{1}} \right) =$$

$$= \frac{A_{1}(p) \cdot R_{1}}{2} ; \quad (28)$$

$$\frac{1}{k_1(p) \cdot \sqrt{R_1}} \cdot \left(C_1(p) \cdot e^{k_1(p)R_1} - D_1(p) \cdot e^{-k_1(p)R_1} \right) = -\frac{A_1(p)}{2}$$
(29)

$$=\frac{n_1(p)}{p\cdot\mu_0}.$$
 (29)

Из (27) находим, что

$$C_2(p) = D_2(p) \cdot e^{-2k_1(p) \cdot R_4}$$
. (30)

Из (28), (29) определяем, что

$$C_1(p) = D_1(p) \cdot e^{-2k_1(p) \cdot R_1} .$$
 (31)

Соотношения (30) и (31) подставим в формулы (21) – (24). После тождественных преобразований получим следующие зависимости

$$E_{\varphi}^{(2)}(p,r) = D_{1}(p) \cdot \frac{2}{\sqrt{r}} \cdot e^{-k_{1}(p)R_{1}} \times \\ \times \operatorname{ch}(k_{1}(p) \cdot (r-R_{1})); \qquad (32)$$

$$H_{z}^{(2)}(p,r) = -D_{1}(p) \cdot \frac{2}{\sqrt{r}} \cdot \frac{\gamma}{k_{1}(p)} \cdot e^{-k_{1}(p)R_{1}} \times \\ \times \operatorname{sh}(k_{1}(p) \cdot (r-R_{1})); \qquad (33)$$

$$E_{\phi}^{(3)}(p,r) = D_2(p) \cdot \frac{2}{\sqrt{r}} \cdot e^{-k_1(p)R_4} \times \\ \times \operatorname{ch}(k_1(p) \cdot (R_4 - r)); \qquad (34)$$

$$H_{z}^{(3)}(p,r) = D_{2}(p) \cdot \frac{2}{\sqrt{r}} \cdot \frac{\gamma}{k_{1}(p)} \cdot e^{-k_{1}(p)R_{4}} \times \\ \times \operatorname{sh}\left(k_{1}(p) \cdot (R_{4}-r)\right).$$
(35)

Выражения (33) – (35) подставим в условие (5). Получаем систему алгебраических уравнений относительно $D_{1,2}(p)$.

$$\begin{cases} D_{1}(p)\frac{1}{\sqrt{R_{2}}}e^{-k_{1}(p)R_{1}}\operatorname{ch}(k_{1}(p)d_{1}) = \\ = -D_{2}(p)\frac{1}{\sqrt{R_{3}}}e^{-k_{1}(p)R_{1}}\operatorname{ch}(k_{1}(p)d_{2}); \\ \frac{2\gamma}{k_{1}(p)}\left(D_{1}(p)\frac{1}{\sqrt{R_{2}}}e^{-k_{1}(p)R_{1}}\operatorname{sh}(k_{1}(p)d_{1}) + (36)\right) \\ +D_{2}(p)\frac{1}{\sqrt{R_{3}}}e^{-k_{1}(p)R_{1}}\operatorname{sh}(k_{1}(p)d_{2}) \\ = \left(\frac{J(p)w}{\ell}\right). \end{cases}$$

Из системы (36) определяем искомые величины.

$$D_{1}(p) = -\left(\frac{J(p)w}{\ell} \cdot \frac{\sqrt{R_{2}}}{2\gamma}\right) \cdot k_{1}(p)e^{k_{1}(p)R_{1}} \times \frac{\operatorname{ch}(k_{1}(p)d_{2})}{\operatorname{sh}(k_{1}(p)(d_{1}+d_{2}))}; \quad (37)$$

$$D_{2}(p) = -\left(\frac{J(p)w}{\ell} \cdot \frac{\sqrt{R_{3}}}{2\gamma}\right) \cdot k_{1}(p)e^{k_{1}(p)R_{4}} \times \frac{\operatorname{ch}(k_{1}(p)d_{1})}{\operatorname{sh}(k_{1}(p)(d_{1}+d_{2}))}.$$
(38)

L-изображение тока, индуцированного в металле внутреннего цилиндра двойного вторичного витка, можно найти с помощью закона полного тока.

$$J_{1}(p) \approx \left(H_{z}^{(2)}(p, r = R_{1}) + H_{z}^{(2)}(p, r = R_{2})\right) \cdot \ell =$$

= $-\left(J(p) \cdot w\right) \cdot \frac{\operatorname{ch}(k_{1}(p)d_{2}) \cdot \operatorname{sh}(k_{1}(p)d_{1})}{\operatorname{sh}(k_{1}(p)(d_{1} + d_{2}))}.$ (39)

Аналогично можно определить ток в металле внешнего цилиндра.

$$J_{2}(p) \approx \left(H_{z}^{(3)}(p, r = R_{3}) + H_{z}^{(3)}(p, r = R_{4})\right) \cdot \ell =$$

= $-\left(J(p) \cdot w\right) \cdot \frac{\operatorname{ch}(k_{1}(p)d_{1}) \cdot \operatorname{sh}(k_{1}(p)d_{2})}{\operatorname{sh}(k_{1}(p)(d_{1} + d_{2}))}.$ (40)

(2)

1 (2)

Алгебраическая сумма выражений (39) и (40) даёт полный ток на выходе двойного вторичного витка при соединении должным образом внутреннего и внешнего цилиндров по краям продольных разрезов.

$$J_{s} = J_{1} + J_{2} = -(J(p) \cdot w).$$
(41)

Полученный результат говорит о том, что при выполнении определённых условий, связывающих геометрию цилиндрического импульсного трансформатора с двойным вторичным витком и частотный диапазон преобразуемых сигналов, электромагнитные потери в предложенном устройстве должны отсутствовать. Энергия тока первичной многовитковой обмотки должна без потерь трансформироваться в энергию тока, возбуждаемого в металле вторичного витка. Справедливость и достоверность полученного результата (41) легко обосновывается, исходя из простых физических соображений.

Условия, выполнение которых обеспечивает практическую реализацию преобразования импульсных сигналов без электромагнитных потерь, выпишем в обобщённом виде отдельно. Они следуют из условия квазистационарности в принятых допущениях и неравенства (18).

$$\begin{array}{ll} \omega \cdot \sqrt{\mu_0 \cdot \varepsilon_0} \cdot R_{\max} & <<1, \\ \sqrt{\omega \cdot \mu_0 \cdot \gamma} \cdot R_{\min} & >>1, \end{array}$$

$$(42)$$

где R_{max} , R_{min} – наибольший и наименьший радиальные размеры двойного вторичного витка соответственно.

Полученный результат о трансформации токов определяет интегральное действие преобразователя. Детали процессов возбуждения индуцированных токов в металле цилиндров двойного вторичного витка следуют из выражений (39) и (40). Наиболее просто распределение токов между цилиндрами прослеживается для достаточно низких частот,

когда
$$\omega \ll \frac{1}{\left(\mu_0 \cdot \gamma \cdot d_{1,2}^2\right)}$$
. В этом случае $|k_1(p) \cdot d_{1,2}| \rightarrow 0$.

Выполняя соответствующие предельные переходы в формулах (39) и (40), находим возбуждаемые вихревые токи.

$$J_{1}(p) \approx \lim_{|k_{1}(p) \cdot d_{1,2}| \to 0} \left(-\left(J(p) \cdot w\right) \times \frac{\operatorname{ch}(k_{1}(p)d_{2}) \cdot \operatorname{sh}(k_{1}(p)d_{1})}{\operatorname{sh}(k_{1}(p)(d_{1}+d_{2}))} \right) = -\left(J(p) \cdot w\right) \cdot \frac{d_{1}}{(d_{1}+d_{2})}; \quad (43)$$

$$J_{2}(p) \approx \lim_{|k_{1}(p) \cdot d_{1,2}| \to 0} \left(-\left(J(p) \cdot w\right) \times \frac{\operatorname{ch}(k_{1}(p)d_{1}) \cdot \operatorname{sh}(k_{1}(p)d_{2})}{\operatorname{sh}(k_{1}(p)(d_{1}+d_{2}))} \right) = -\left(J(p) \cdot w\right) \cdot \frac{d_{2}}{(d_{1}+d_{2})}.$$
(44)

Выводы

1. Проведен анализ электродинамических процессов в цилиндрическом согласующем устройстве с двойным вторичным разом-кнутым витком.

2. Проведено теоретическое обоснование работоспособности рассматриваемого согласующего устройства в качестве промежуточного преобразователя между источником мощности и инструментом-индуктором.

3. В низкочастотном режиме работы цилиндрического согласующего импульсного трансформатора с двойным вторичным витком индуцированные токи распределяются пропорционально толщине цилиндров, образующих обмотку этого витка. Достоверность данного вывода очевидна из физических соображений.

Литература

- Туренко А. Н. Импульсные магнитные поля для прогрессивных технологий. Том 3. Теория и эксперимент притяжения тонкостенных металлов импульсными магнитными полями: монография /А. Н. Туренко, Ю. В. Батыгин, А. В. Гнатов. – Х.: ХНАДУ, 2009. – 240 с.
- 2. Белый И. В. Справочник по магнитно-импульсной обработке металлов / И. В. Белый, С. М. Фертик, Л. Т. Хименко. – Х.: Вища школа, 1977. – 189 с.

- 3. Пат. 1464646 ФРГ, МКИ В 21 D 26/14, Н 01 F (7c 26/14, 21 D 2/49, 21 G 1/02). Vorrichtung zur Formung von Werkstückken durch Anwendung magnetischer Impulse / Brolon F. D., Hayward G. B. заявитель и патентообладатель Gulf General Atomic Incorp., San Diego, California (США). – № Р 1464646.9-14 (G 39271); заявл. 29.11.63; опубл. 19.05.71.
- Кончаренко Г. М. Импульсный согласующий трансформатор / Г.М. Гончаренко, В. А. Галкин, Ю. И. Гужавин и др. // Высоковольтная импульсная техника. – Чебоксары: Чуваш. гос. ун-т им. И.Н. Ульянова. – 1976. – Вып. 3. – С. 27 – 34.
- Комельков В. С. Техника больших импульсных токов и магнитных полей / В. С. Комельков, П. Н. Дашук, С. Л. Зайенц. – М.: Атомиздат, 1970. – 472 с.
- 6. Батыгин Ю. В. Анализ электродинамических процессов в согласующем устройстве «дискового» типа / Ю. В. Батыгин, А. В. Гнатов, И. С. Трунова // Механіка та інформатика: матеріали VIII Українсько-Польської конференції молодих науковців Хмельницького національного університету, Хмельницький, 12 – 14 травня 2011 р. – С. 19 – 21.
- Батыгин Ю. В. Особенности магнитноимпульсной «раздачи» тонкостенных трубчатых заготовок / Ю. В. Батыгин, В. И. Лавинский // Электричество. – 2005. – №11. – С. 62 – 68.
- 8. Корн Г. Справочник по математике / Г. Корн, Т. Корн. – М.: Наука, 1973. – 832 с.
- Батыгин Ю. В. Импульсные магнитные поля для прогрессивных технологий / Ю. В. Батыгин, В. И. Лавинский. – Т.2: Магнитно-импульсная обработка тонкостенных металлов. – Х.: МОСТ– Торнадо, 2002. – 288 с.

Рецензент: О.Я. Никонов, профессор, д.т.н., XHAДУ.

Статья поступила в редакцию 16 марта 2012 г.