# ДИНАМИЧЕСКОЕ ВОЗДЕЙСТВИЕ АВТОМОБИЛЯ НА ДОРОГУ

УДК 621.015

# ОБЩИЙ ПОДХОД К РЕШЕНИЮ ЛИНЕЙНЫХ, ТРЕХМЕРНЫХ, ВЯЗКОУПРУГИХ ОБОБЩЕННЫХ МОДЕЛЕЙ МАКСВЕЛЛА

## В.А. Богомолов, профессор, д.т.н., В.К. Жданюк, профессор, д.т.н., С.В. Богомолов, инженер, ХНАДУ

Аннотация. Предложена методика получения решения как по напряжениям, так и по деформациям для вязкоупругих 3D-моделей с п-м количеством элементов Максвелла.

**Ключевые слова:** элемент Гука, элемент Ньютона, элемент Максвелла, девиатор, шаровой тензор, деформации, напряжения.

# ЗАГАЛЬНИЙ ПІДХІД ДО РОЗ'ЯЗАННЯ ЛІНІЙНИХ, ТРИВИМІРНИХ, В'ЯЗКОПРУЖНИХ УЗАГАЛЬНЕНИХ МОДЕЛЕЙ МАКСВЕЛЛА

## В.О. Богомолов, професор, д.т.н., В.К. Жданюк, професор, д.т.н., С.В. Богомолов, інженер, ХНАДУ

Анотація. Запропоновано методику отримання розв'язку як по напругах, так і по деформаціях для в'язкопружних 3D-моделей з п-ю кількістю елементів Максвелла.

**Ключові слова:** елемент Гука, елемент Н'ютона, елемент Максвелла, девіатор, шаровой тензор, деформації, напруги.

## THE ELEMENTARY LINKS OF LINEAR THREE-DEMENSIONAL RHEOLOGICAL MODEL OF ASPHALT-CONCRETE

## V. Bogomolov, Professor, Doctor of Technical Science, V. Zhdaniuk, Professor, Doctor of Technical Science, S. Bogomolov, engineer, KhNAHU

*Abstract.* The method of decision-making according to both stress and deformation for viscoelastic 3-D models with the total number of Maxwell elements is offered.

*Key words: Guk element, Newton element, Maxwell element, deviator, sphere tensor, deformations, stresses.* 

## Введение

В работе [1] показано, что любую линейную вязкоупругую структурную модель можно привести к одному из видов (рис. 1).

### Анализ публикаций

В работе [2] приведено исходное дифференциальное уравнение для 3D-элемента Максвелла. Для *n*-го элемента (рис. 1) оно будет иметь вид:

$$D_H^n + \frac{\eta_n}{G_n} \frac{dD_H^n}{dt} = 2\eta_n \frac{dD_d^n}{dt}, \qquad (1)$$

где  $\eta_n$ ,  $G_n$  – обозначены на рис. 1;  $D_H^n$ ,  $D_d^n$  – девиаторы напряжений и деформаций для *n*-го элемента Максвелла.

Исходя из работы [3], можно также записать уравнение, описывающее элемент Гука, рис. 1, б, г

$$D_{H(G)}^{\infty} = 2G_{\infty}D_{d(G)}^{\infty} \tag{2}$$

где  $D_{H(G)}^{\infty}$ ,  $D_{d(G)}^{\infty}$  – девиаторы напряжений и деформаций элемента Гука, рис. 1, б, г;

– для элемента Ньютона (рис. 1, в, г)

$$D_{H(N)}^{\infty} = 2\eta_{\infty} \mathcal{B}_{d(N)}^{\infty}, \qquad (3)$$

где  $D_{H(N)}^{\infty}$ ,  $B_{H(N)}^{\infty}$  – соответствующие девиаторы напряжений и скоростей деформаций.

Из работы [4] можно записать решения для девиатора напряжений элемента Максвелла

$$D_{H}^{n} = D_{H}^{0n} e^{-\frac{t}{\tau_{n}}} + \int_{0}^{t} 2G_{n} e^{-\frac{t-\xi}{\tau_{n}}} D_{d}^{\theta t} d\xi, \qquad (4)$$

где  $D_H^{0n}$  – девиатор напряжений *n*-го элемента при начальных условиях, т.е. при t = 0;  $B_d^{0n}$  – девиатор скоростей деформаций *n*-го элемента Максвелла;  $\tau_n = \frac{\eta_n}{G_n}$ ; t – время нагружения;  $\xi$  – текущее время.



Рис. 1. Линейные вязкоупругие структурные модели *с п* количеством элементов Максвелла: а, б, в, г – разновидности обобщенных моделей Максвелла; *G*<sub>1</sub>, *G*<sub>2</sub>, ... *G<sub>n</sub>*, *G<sub>∞</sub>* – модули упругости на сдвиг соответствующих элементов Гука; η<sub>1</sub>, η<sub>2</sub>, ... η<sub>n</sub>, η<sub>∞</sub> – коэффициенты вязкости соответствующих элементов Ньютона

#### Цель и постановка задачи

Исходя из известных решений [2–4], необходимо построить общие решения для тензоров напряжений и деформаций обобщенных моделей Максвелла.

### Тензор напряжений

Известно [5], что тензор напряжений можно представить в виде

$$T_H = D_H + I\sigma_{sr}, \qquad (5)$$

где  $D_H$  – девиатор напряжений;  $I \cdot \sigma_{sr}$  – шаровой тензор; I – единичная матрица;  $\sigma_{sr}$  – среднее напряжение в точке [5].

### Девиатор напряжений

Если известны девиаторы деформаций  $D_d$  и их скоростей изменения  $B_d^{k}$ , при этом

$$D_{d} = D_{d}^{n} = D_{d(N)}^{\infty} = D_{d(G)}^{\infty},$$
  
$$B_{d}^{\mathbf{g}} = B_{d}^{\mathbf{g}} = B_{d(N)}^{\mathbf{g}} = B_{d(G)}^{\mathbf{g}}$$
(6)

где  $D_d$  – девиатор деформации исследуемой структурной модели;  $B_d^{\mathbf{r}}, B_{d(N)}^{\mathbf{r}}, D_{d(G)}^{\infty}$  – обозначены в (4, 3, 2), то в общем случае для рис. 1 решение относительно девиатора напряжений можно записать в виде

$$D_{H} = \sum_{n=1}^{m} D_{H}^{n} + D_{H(N)}^{\infty} + D_{H(G)}^{\infty}, \qquad (7)$$

где  $D_{H}^{n}, D_{H(N)}^{\infty}, D_{H(G)}^{\infty}$  – записаны в (4, 3, 2).

В случае одноосного напряженно-деформированного состояния, например, растяжения-сжатия вдоль оси *X* 

$$\sigma_x = \sum_{n=1}^m \sigma_x^n + \sigma_{x(N)}^\infty + \sigma_{x(G)}^\infty, \qquad (8)$$

где  $\sum_{n=1}^{m} \sigma_{x}^{n}, \sigma_{x(N)}^{\infty}, \sigma_{x(G)}^{\infty}$  – напряжения в элементах (рис. 1), в соответствии с (7).

Из [4]

$$\sigma_x^n = \sigma_{x0}^n e^{-\frac{t}{\tau_n}} + \int_0^t 3G_n e^{-\frac{t-\xi}{\tau_n}} \mathscr{L}_x^d d\xi , \qquad (9)$$

где  $\sigma_{x0}^n$  – начальные условия по напряжениям для *n*-го элемента Максвелла.

$$\sigma_{x(N)}^{\infty} = 3\eta_{\infty} \mathscr{E}_{x}; \qquad (10)$$

$$\sigma_{x(G)}^{\infty} = 2G_{\infty}(1+\mu)(\varepsilon_x + \varepsilon_{x0}); \qquad (11)$$

где  $\varepsilon_{x0}$  – деформация при t = 0;  $\mu$  – коэффициент Пуассона.

При нагружении на срез, например, для т<sub>xv</sub> (см. [4])

$$\tau_{xy} = \sum_{n=1}^{m} \tau_{xy}^{n} + \tau_{xy(N)}^{\infty} + \tau_{xy(G)}^{\infty}, \qquad (12)$$

где

τ<sup>0n</sup><sub>xy</sub> – начальные условия по напряжениям для *n*-го элемента Максвелла.

 $\tau_{xy}^{n} = \tau_{xy}^{0n} e^{-\frac{t}{\tau_{n}}} + \int_{0}^{t} G_{n} e^{-\frac{t-\xi}{\tau_{n}}} \mathscr{X}_{xy} d\xi ,$ 

Из [3]

$$\tau_{xy(N)}^{\infty} = \eta \mathscr{K}_{xy}; \qquad (14)$$

(13)

$$\tau_{xy(G)}^{\infty} = G_{\infty}(\gamma_{xy} + \gamma_{xy}^{0})$$
 (15)

 $\gamma_{xy}^0$  – деформация сдвига при t = 0.

В выражениях (7, 8, 10–12, 14, 15), приравнивая к нулю  $\eta_{\infty}$  и (или)  $G_{\infty}$ , можно получить решение для любой из моделей (рис. 1).

#### Шаровой тензор напряжений

Определяя шаровой тензор через  $\sigma_{sr}$ , см. (5), для последних, исходя из выводов работ [2–4], по аналогии с (7) можно записать

$$\sigma_{sr} = \sum_{n=1}^{m} \sigma_{sr}^{n} + \sigma_{sr(N)}^{\infty} + \sigma_{sr(G)}^{\infty}, \qquad (16)$$

где из [4]

$$\sigma_{sr}^{n} = \sigma_{sr}^{0n} e^{-\frac{t}{\tau_{0n}}} + 3 \int_{0}^{t} K_{n} e^{-\frac{t-\xi}{\tau_{0n}}} \mathscr{E}_{sr} d\xi, \qquad (17)$$

 $\sigma_{sr}^{0n}$  – начальные условия по  $\sigma_{sr}^{n}$ , при t = 0;

$$\tau_{0n} = \frac{\eta_{Vn}}{K_n}; \qquad (18)$$

 $\eta_{Vn}$  – коэффициент объемного вязкого сопротивления [10] *n*-го элемента Максвелла;

$$K_n = \frac{2G_n(1+\mu)}{3\cdot(1-2\mu)}$$
 – модуль упругости (19)

при объемном расширении *n*-го элемента Максвелла;  $\varepsilon_{sr}^{n}$  – средняя деформация [5] для *n*-го элемента Максвелла;

$$\sigma_{sr(N)}^{\infty} = 3\eta_V^{\infty} \&_{sr}, \, \mathrm{CM} \, [3], \qquad (20)$$

где  $\eta_V^{\infty}$  – коэффициент объемного вязкого сопротивления у элемента Ньютона (рис. 1, в, г).

$$\sigma_{sr(G)}^{\infty} = 3K^{\infty}(\varepsilon_{sr} + \varepsilon_{sr}^{0}), \qquad (21)$$

где  $K^{\infty}$  – модуль упругости при объемном расширении элемента Гука, рис. 1, б, г;  $\varepsilon_{sr}^{0}$  – средняя деформация при t = 0.

Несколько иной подход нужно использовать, если по известному тензору напряжений и его производным по времени необходимо найти тензор деформаций.

Представляя последний в виде

$$T_d = D_d + I\varepsilon_{sr} , \qquad (22)$$

необходимо исходить из дифференциального уравнения для всей структурной модели.

#### Девиатор деформаций

Для моделей на рис. 1 исходное дифференциальное уравнение удобнее всего получать исходя из [2, 6, 8]

$$\frac{1}{\frac{1}{G_1} + \frac{1}{\eta_1 D}} + \frac{1}{\frac{1}{G_2} + \frac{1}{\eta_2 D}} + \dots$$

$$\dots + \frac{1}{\frac{1}{G_n} + \frac{1}{\eta_n D}} + \eta_\infty D + G_\infty = \frac{D_H}{2 \cdot D_d},$$
(23)

где *D* – символ, имеющий смысл дифференцирования по времени. Все математические преобразования с ним в (23) проводятся как с обычной алгебраической величиной, в конце

заменяя на  $\frac{d}{dt}$ .

Получив, таким образом, линейное дифференциальное уравнение, его можно решать как относительно  $D_d$ , так и  $D_H$  [7].

Например, в [2] для двух параллельных элементов Максвелла получено

$$\frac{D_H}{2D_d} = \frac{1}{\frac{1}{G_1} + \frac{1}{\eta_1 D}} + \frac{1}{\frac{1}{G_2} + \frac{1}{\eta_2 D}}, \qquad (24)$$

откуда

$$2\eta_{1}\eta_{2}(G_{1}+G_{2})B_{d}^{*}+2G_{1}G_{2}(\eta_{1}+\eta_{2})B_{d}^{*}=$$
  
=  $\eta_{1}\eta_{2}B_{H}^{*}+(G_{1}\eta_{2}+G_{2}\eta_{1})B_{H}^{*}+G_{1}G_{2}D_{H}$  (25)

Общеизвестно [7, 8], что для уравнения вида

$$a_0 \overset{\text{alpha}}{\longrightarrow} a_1 \overset{\text{alpha}}{\longrightarrow} a_2 x = f(t) \tag{26}$$

с начальными условиями

$$x(0) = x_0; x(0) = x(0)$$
 (27)

решение можно рассматривать в виде

$$x = x_{0P0} + x_{chPH}, \qquad (28)$$

где  $x_{0.P.0}$  – общее решение однородного уравнения;  $x_{ch.P.H}$  – частное решение неоднородного уравнения.

При этом для случая  $(a_1^2 - a_0 a_2) \rangle 0$ 

$$x_{0.P.0} = c_1 e^{k_1 t} + c_2 e^{k_2 t}, \qquad (29)$$

где  $k_1, k_2$  – корни характеристического уравнения (26)

$$a_0 k^2 + a_1 k + a_2 = 0; (30)$$

*c*<sub>1</sub>, *c*<sub>2</sub> – постоянные, определяемые из начальных условий (27). Частное решение неоднородного уравнения

$$x_{ch.P.H} = c_1(t)e^{k_1t} + c_2(t)e^{k_2t}$$
. (31)

После соответствующих преобразований получаем

$$x_{ch.P.H} = \int_{0}^{t} \frac{1}{(k_2 - k_1)a_0} \times \left[ e^{k_2(t-\xi)} - e^{k_1(t-\xi)} \right] f(\xi) d\xi.$$
(32)

Применяя решения (29, 32) к рассматриваемой задаче (25), получаем

$$D_{d} = c_{1} + c_{2}e^{k_{2}t} - -\int_{0}^{t} \frac{1}{a_{1}} \Big[ e^{k_{2}(t-\xi)} - 1 \Big] f(\xi) d\xi , \qquad (33)$$

$$c_1 = D_d^0 - \frac{D_d^0}{k_2};$$
 (34)

$$c_2 = \frac{B_d^0}{k_2};$$
 (35)

$$a_1 = 2G_1G_2(\eta_1 + \eta_2);$$
 (36)

 $f(\xi)$  – правая часть уравнения (24);

где

$$k_2 = -\frac{a_1}{a_0}; (37)$$

$$a_0 = 2\eta_1\eta_2(G_1 + G_2);$$
 (38)

 $D_d^0$ ,  $B_d^0$  – начальные условия.

В случае одноосного нагружения, например для  $\sigma_x$ . Для уравнения [2]

$$3\eta_{1}\eta_{2}(G_{1}+G_{2}) \bigotimes_{x}^{\infty} + 3G_{1}G_{2}(\eta_{1}+\eta_{2}) \bigotimes_{x}^{\infty} =$$

$$= \eta_{1}\eta_{2} \bigotimes_{x}^{\infty} + (G_{1}\eta_{2}+G_{2}\eta_{1}) \bigotimes_{x}^{\infty} + G_{1}G_{2}\sigma_{x}$$
(39)

получаем решение

$$\varepsilon_{x} = c_{1} + c_{2}e^{k_{2}t} - \int_{0}^{t} \frac{1}{a_{1}} \Big[ e^{k_{2}(t-\xi)} - 1 \Big] f(\xi)d\xi, \quad (40)$$

$$c_1 = \varepsilon_{x0} - \frac{\delta_{x0}}{k_2}; \qquad (41)$$

$$c_2 = \frac{\&}{k_2}; \tag{42}$$

$$a_1 = 3G_1G_2(\eta_1 + \eta_2);$$
 (43)

$$a_0 = 3\eta_1\eta_2(G_1 + G_2); \qquad (44)$$

 $\varepsilon_{x0}, \, \&_{x0}$  – начальные условия.

При чистом срезе, например, для  $\tau_{yx}$ ,  $\gamma_{yx}$ . При уравнении [2]

$$\eta_{1}\eta_{2}(G_{1}+G_{2}) \bigotimes_{yx}^{w} + G_{1}G_{2}(\eta_{1}+\eta_{2})\gamma_{yx} =$$

$$= \eta_{1}\eta_{2} \bigotimes_{yx}^{w} + (G_{1}\eta_{2}+G_{2}\eta_{1}) \bigotimes_{yx}^{w} + G_{1}G_{2}\tau_{yx}.$$
(45)

Решение имеет вид

$$\gamma_{yx} = c_1 + c_2 e^{k_2 t} - - \int_0^t \frac{1}{a_1} \Big[ e^{k_2 (t-\xi)} - 1 \Big] f(\xi) d\xi,$$
(46)

 $\mathcal{A}_{\mathbf{x}_0}$ 

где

где

$$c_1 = \gamma_{xo} - \frac{\varphi_{x0}}{k_2};$$
 (47)

$$c_2 = \frac{\psi_{\chi_0}}{k_2};$$
(48)

$$a_1 = G_1 G_2(\eta_1 + \eta_2);$$
 (49)

$$a_0 = \eta_1 \eta_2 (G_1 + G_2) ; \qquad (50)$$

*γ*<sub>*x*0</sub>, **№**<sub>*x*0</sub> – начальные условия.

## Шаровой тензор деформаций

Методика определения  $\varepsilon_{sr}$  (22) такая же, как и в случае с девиатором деформаций. Исходное дифференциальное уравнение необходимо получать из [2, 6]

$$\frac{\frac{1}{1}}{\frac{1}{K_{1}} + \frac{1}{\eta_{V1}D}} + \frac{1}{\frac{1}{K_{2}} + \frac{1}{\eta_{V2}D}} + \dots$$

$$\dots + \frac{1}{\frac{1}{\frac{1}{K_{n}} + \frac{1}{\eta_{Vn}D}}} + \eta_{V\infty}D + K_{\infty} = \frac{\sigma_{sr}}{3\varepsilon_{sr}},$$
(51)

где  $K_n$ ,  $K_{\infty}$  – объемные модули упругости соответствующих элементов (рис. 1);  $\eta_{V_n}$ ,  $\eta_{V\infty}$  – объемные коэффициенты вязкого сопротивления.

Далее методика решения соответствует (26)-(32).

### Выводы

Полученные 3D-решения обобщенной модели Максвелла впоследствии могут быть использованы:

1. При численном моделировании сложных инженерных сооружений, например, с использованием метода конечных элементов.

2. При анализе экспериментальных данных.

## Литература

- 1. Богомолов В.А. Универсальный метод составления линейных вязкоупругих структурных моделей / В.А. Богомолов, В.К. Жданюк, С.В. Богомолов // Автомобильный транспорт: сб. научн. тр. -2011. – № 28. – C. 125–131.
- 2. Богомолов В.А. Общий метод получения дифференциальных зависимостей деформаций от напряжений для линейных реологических 3-D моделей / В.А. Богомолов, В.К. Жданюк, С.В. Богомолов // Вестник ХНАДУ: сб. научн. тр. – 2011. – № 52. – С. 54–59.
- Богомолов В.А. Простейшие звенья ли-3. нейной пространственной реологической модели асфальтобетона / В.А. Богомолов, В.К. Жданюк, С.В. Богомолов // Автомобильный транспорт: сб. научн. тр. – 2010. – № 27. – С. 157–162.
- 4. Богомолов В.А. Общее решение для линейной, трехмерной, вязкоупругой модели Максвелла / В.А. Богомолов, В.К. Жданюк, С.В. Богомолов // Вестник ХНАДУ: сб. научн. тр. - 2011. - № 53. -C. 70–72.
- Безухов Н.И. Основы теории упругости, 5. пластичности и ползучести / Н.И. Безухов. – М.: Высшая школа, 1968. – 512 с.
- 6. Дж. Мейз. Теория и задачи механики сплошных сред / Дж. Мейз; пер. с англ. Е.И. Свешниковой. - М.: Мир, 1974. -318 c.

# 158

- Пискунов Н.С. Дифференциальные и интегральные исчисления для втузов: [учебн. пос. для ВТУ] / Н.С. Пискунов. – М. : Наука, 1978. – Т. 2. – 575 с.
- Корн Г. Справочник по математике для научных работников и инженеров. Определения, теоремы, формулы / Г. Корн, Т. Корн ; пер. со второго американск. перераб. изд-я Н.Г. Арамановича, А.М. Березмана и др. – М.: Наука. Главн. ред. физ.-мат. лит-ры, 1984. – 831 с.
- Ржаницын А.Р. Теория ползучести / А.Р. Ржаницын. – М. : Изд-во лит-ры по строит-ву, 1968. – 416 с.
- Рейнер М. Деформация и течение / М. Рейнер; пер. со втор. англ. изд. Л.В. Никитина, А.Н. Кочеткова, В.Н. Кукуджанова. – М.: Гос. научн.-техн. издво нефтян. и горно-топливной лит-ры, 1963. – 381 с.

Рецензент: В.В. Филиппов, профессор, д.т.н., XHAДУ.

Статья поступила в редакцию 27 мая 2011 г.