MODELING OF OPERATION PROCEDURE OF SYNCHRONIZATION IN TEN-SPEED GEAR BOX OF TRUCKS

V. Bogomolov, Professor, Doctor of Technical Science, V. Klimenko, Professor, Candidate of Technical Science, N. Mykhalevych, Candidate of Technical Science, N. Sylchenko, postgraduate, KhNAHU

Abstract. Different combinations of synchronizers switching at clutching in the ten-speed gear box are considered.

Key words: synchronization time, specific friction work, gear box, devisor.

Вступ

Зараз зазнає суттєвих змін найбільш консервативна складова автомобіля – трансмісія. Розвиток технологій дозволяє втілити найбільш амбіційні ідеї минулих років. Вдосконалюються також електронні системи керування трансмісією.

Аналіз публікацій

Так, наприклад, фірма BMW задіяла GPS-навігацію у керуванні автоматичною коробкою передач [1]. Декі виробники вантажних автомобілів почали застосовувати гібридну трансмісію, яка традиційно була виключно атрибутом легкового автомобіля [2, 3]. Серед легкових та вантажних автомобілів достатньо поширено є роботизована коробка передач [3]. Завдяки збереженню механічної силової частини коробки передач, залишається доволі низькою вартість агрегату та високий ККД. Перемикання передач відбувається завдяки додатковим пристроям, керованим електронним блоком. Виконавчі пристрої мають досить різноманітну будову та принципову конструкцію. Наприклад, такі пристрої за задіянім джерелом живлення бувають електронно-світлові, електрогідралічні та електромеханічні.
Мета та постановка задачі
Метою дослідження є вивчення процесів, що відбуваються під час перемикання передач десятistупінчастої коробки у різних комбінаціях пересування синхронізаторів. Це дозволяє раціонально побудувати не тільки алгоритм керування коробкою передач, а й виконавчий пристрій вибору передачі, звести до мінімуму кількість джерел енергії, що живить пристрій.

Математична модель перемикання передач
Моделювання процесу перемикання передач складається з декількох варіантів перемикання: перемикання передачі в основній коробці без участі дільника; перемикання синхронізатора у дільнику без участі основної коробки передач; синхронне перемикання як у дільнику, так і у коробці передач.

Під час моделювання було введено наступні припущення: вимикання передачі відбувається миттєво; моделювання починається з моменту вимикнення попередньої передачі (з моменту роз’єднання синхронізатора та шестерні попередньої передачі); динамічна стадія зарядження зусильна на синхронизаторі відбувається за 0,15 с, згідно з експериментальними дослідженнями, що проводились на кафедрі автомобілів [4].

Моделювання робочих процесів, що відбиваються під час перемикання передач, можливе за наявності інформації про геометричні параметри шестерень та валів, моментів опору кочення у підшипниках та чисел зубів шестерень. Схему коробки передач із необхідними параметрами наведено на рис. 1.

Відповідно до розрахунків, наведених у другому розділі, у коробці існують режими перемикання передач, у яких використовується синхронізатор у коробці передач, синхронізатор у дільнику та режими, де обидва синхронізатори виконують перемикання передач. Розглянемо окремо ці режими перемикання. Під час перемикання передач у коробці передач відбувається вирівнювання швидкостей обертання синхронізатора та шестерні, на яку відбувається перемикання. Для ілюстрації процесів, що відбиваються під час перемикання, запишемо рівняння Лагранжа другого роду процесу перемикання передач у коробці передач у загальному вигляді

\[
\frac{d}{dt} \left(\frac{\partial T}{\partial q} \right) - \frac{\partial T}{\partial q} = - \frac{\partial \Pi}{\partial q}. \tag{1}
\]

Кінетична енергія обертання елементів коробки передач та поступового руху транспортного засобу запишеться у вигляді

\[
T = \frac{m_a \cdot V_a^2}{2} + J_y \cdot \omega_y^2. \tag{2}
\]

Рис. 1. Схема коробки передач із позначенням моментів інерції мас, що обертаються
Зміна потенційної енергії

\[
\frac{\partial \Pi}{\partial \eta} = P_w + P_y \pm M_{\text{синхр}}. \tag{3}
\]

Рис. 2 ілюструє розрахункову схему ввімкнення передачі за допомогою одного синхронізатора. На рис. 3 наведено схему з вимкнання передачі, яка потребує переміщення двох синхронізаторів за один рух важеля перемикання передач.

Рис. 2. Розрахункова схема перемикання основною коробкою

На рис. 2 позначені: \(M_c \) – момент, який створює синхронізатор; \(m_a \) – маса, що імітує інерцію автомобіля; \(J_K \) – момент інерції, що імітує інерцію шестерень коробки передач. Позначення на рис. 3 співпадають із позначеннями на рис. 2. Додаткові позначення: \(M_{co} \) – момент, який створює синхронізатор дільника; \(J_K \) – момент інерції, що імітує інерцію тяжких дисків зчеплення.

Рис. 3. Розрахункова схема синхронного підкрекання у коробці та дільнику

Система рівняння, що описує процес ввімкнення передачі, складається з двох структурних складових: частини, що описує обертання шестерень і валів коробки передач, та часінин, що описує уповільнення транспортного засобу під час перемикання з однієї передачі на іншу. Ланцюгом між двома частинами виступає момент, створений синхронізатором. Система рівняння має вигляд

\[
\begin{align*}
J_a \cdot \frac{d \omega_a}{dt} &= -P_w - P_y + M_{\text{синхр}} \cdot \text{sign}(\omega_a - \omega_0) \cdot u_0 - J_{\Pi} \cdot \varepsilon_\Pi \\
J_w \cdot \frac{d \omega_w}{dt} &= -M_{\text{п}} + M_{\text{синхр}} \cdot \text{sign}(\omega_w - \omega_0) - \sum (J_j \cdot \varepsilon_j) \\
\varepsilon_\Pi &= \varepsilon_w \cdot u_0 \\
\omega_\Pi &= V_w \cdot u_0 \\
\omega_w &= \int \varepsilon_w dt \\
\omega_0 &= \frac{V_w \cdot u_0 - u_{II \rightarrow w}}{r_e} \\
V_a &= V_{\text{сп}}
\end{align*}
\tag{4}
\]

de \(j_a \) – уповільнення транспортного засобу, \(m/\text{s}^2 \); \(P_w \) – сила опору повітря, \(\text{H} \); \(M_{\text{синхр}} \) – момент, який створює синхронізатор, \(\text{H} \cdot \text{м} \); \(\omega_0 \) – кутова швидкість шестерні відповідної передачі, на яку відбувається перемикання, \(\text{c}^{-1} \); \(\omega_\Pi \) – кутова швидкість вторинного вала, \(\text{c}^{-1} \); \(J_{\Pi} \) – момент інерції вторинного вала, \(\text{кг} \cdot \text{м}^2 \); \(\varepsilon_\Pi \) – кутове прискорення вторинного вала, \(\text{c}^{-2} \); \(r_e \) – радіус колеса, \(\text{м} \); \(u_0 \) – передавальне число головної передачі; \(\varepsilon_i \) – кутове прискорення \(i \)-тої шестерні коробки передач, \(\text{c}^{-2} \); \(\varepsilon_w \) – кутове прискорення шестерні коробки передач, з якою зчеплюється синхронізатор, \(\text{c}^{-2} \); \(u_i \) – передавальне число від шестерні, з якою зчеплюється синхронізатор до \(i \)-тої шестерні; \(V_a \) – швидкість автомобіля, \(\text{км/год} \); \(V_{\text{сп}} \) – початкова швидкість автомобіля, \(\text{км/год} \); \(\omega_0 \) – початкова кутова швидкість шестерні відповідної передачі, на яку відбувається перемикання, \(\text{c}^{-1} \); \(u_{II \rightarrow w} \) – передавальне число від вторинного вала до шестерні, на яку відбувається перемикання під час ввімкнення попередньої передачі; \(V_{\text{сп}} \) – критична швидкість на попередній ввімкненій передачі, \(\text{км/год} \); \(m_s \) – маса автомобіля, \(\text{кг} \); \(J_{\Pi} \) – момент інерції \(i \)-тої шестерні, \(\text{кг} \cdot \text{м}^2 \); \(J_w \) – момент інерції шестерні, на яку відбувається перемикання.
васться перемикання, кг·м²; \(M_\text{тр} \) – момент тертя підшипників коробки передач, Н·м.

Система рівнянь, що описує процес синхронного перемикання передач у коробці та у дільнику, має вигляд (5).

\[
\begin{align*}
J_x &= \frac{-P_u - P_y + M_\text{своп} \cdot \text{sign}(\omega_m - \omega_H) \cdot \frac{u_H}{r_u} - J_u \cdot \varepsilon_H}{m_a} \\
\varepsilon_H &= \frac{J_x \cdot u_H}{r_u} \\
\varepsilon_u &= \frac{-M_\text{тр} + M_\text{своп} \cdot \text{sign}(\omega_H - \omega_u) - \sum(J_i \cdot \varepsilon_i)}{J_u} \\
&+ \frac{M_\text{своп} \cdot \text{sign}(\omega_m - \omega_u)}{J_u} \\
\varepsilon_H &= \varepsilon_u \cdot u_i \\
\omega_H &= \frac{V_o \cdot u_H}{r_u} \\
\omega_u &= \int \varepsilon_u \, dt \\
\omega_m &= \omega_u \cdot u_i \\
\omega^0 &= \frac{V_o}{r_u} \cdot u_{H \to u} \\
V_o^0 &= \frac{V_o^0 \cdot u_o}{r_u} \cdot u_{H \to c_H} \\
\end{align*}
\]

де \(\varepsilon_u \) – кутова прискорення тяжких дисків зчеплення \(s^2 \); \(J_c \) – момент інерції тяжких дисків, кг·м²; \(\omega_u \) – кутова швидкість тяжких дисків зчеплення \(s^{-1} \); \(\omega_m \) – кутова швидкість тяжкої шестерні, з якою зчіпляється синхронізатор дільника \(s^{-1} \); \(M_\text{своп} \) – момент, який створює синхронізатор дільника, Н·м; \(M_\text{тр} \) – момент тертя підшипників коробки передач, Н·м; \(\omega^0 \) – початкова кутова швидкість тяжких дисків зчеплення \(s^{-1} \); \(u_{H \to c_H} \) – передавальне число від вториної валка до тяжких дисків зчеплення під час ввімкнення попередньої передачі.

З огляду на частоту використання передач та припустиму питому роботу буксування, для кожної передачі існує значення моменту, що створює синхронізатор, прийнятне для забезпечення необхідного часу служби синхронізатора. Значення припустимої роботи синхронізатора коливається від 0,5 до 0,2 МДж/м². Більше значення відносяться до нижніх передач, а менше – до вищих. Значення допустимого моменту на кожній передачі наведено у табл. 1.

<table>
<thead>
<tr>
<th>Номер передачі</th>
<th>Середній радіус телеса, мм</th>
<th>Ширина його синхронізатора, мм</th>
<th>Момент тертія синхронізатора, Н·м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Друга</td>
<td>92</td>
<td>17</td>
<td>137,2</td>
</tr>
<tr>
<td>Третя</td>
<td>92</td>
<td>15</td>
<td>67,0</td>
</tr>
<tr>
<td>Четверта</td>
<td>65</td>
<td>15</td>
<td>42,4</td>
</tr>
<tr>
<td>П’ята</td>
<td>57</td>
<td>15</td>
<td>25,7</td>
</tr>
<tr>
<td>Нижча дільника</td>
<td>63</td>
<td>17</td>
<td>35,6</td>
</tr>
<tr>
<td>Вища дільника</td>
<td>63</td>
<td>17</td>
<td>35,6</td>
</tr>
</tbody>
</table>

У ручному режимі водій прикладає до важеля перемикання передач ненормоване зусилля; оскільки він прикладає до важеля приблизно однакове зусильля, тому час синхронізації може відрізнятися як у більшу сторону, так і в меншу. Таку ж картину можна спостерігати і при керуванні коробкою передач електропневматичним механізмом. Функціональна схема суттєво обмежує можливість регулювання зусиль на синхронізаторі, оскільки для всіх передач використовується один силовий циліндр.

Таким чином пневматичний цилінدر може забезпечити два рівні зусилля на синхронізаторі. Як правило, параметри силового циліндра обираються із міркувань забезпечення необхідного зусильля на нижніх передачах. У свою чергу вищі передачі знаходяться під дією занадто великої сили. Позитивною стороною цього стає зменшення часу синхронізації, а негативною – скорочення терміну служби синхронізаторів. При використанні електромеханічного виконавчого механізму регулювання зусиль дуже просто відбувається за допомогою обмеження строму в обмотці електродвигуна.

Вирішення системи рівнянь перемикання на вищі та нижчі передачі проілюстровано, відповідно, на рис. 4–7.
Рис. 4. Робочий процес перемикання з нижчої передачі на вищу

Рис. 5. Робочий процес перемикання з вищої передачі на нижчу

Рис. 6. Робочий процес з перемиканням у дільнику та наступним перемиканням з вищої передачі на нижчу у коробці передач

Рис. 7. Робочий процес перемикання з вищої передачі на нижчу із одночасним перемиканням у дільнику
На рисунках зображено час синхронізації при використанні електромеханічного приводу з обмеженням зусилля у рамках допус-тимої величини.

Під час перемикання передач разом із дільником моделювалися два варіанти роботи. Одночасне вимикання передач та перемикання передач у коробці послідовно після переключення ступені у дільників. Інтервал між початком вімкнення 0,35 с (рис. 6). Другий варіант – одночасне перемикання передач у коробці та дільник (рис. 7).

Із аналізу робочих процесів перемикання передач у двох режимах випливає, що час повного перемикання передач мало відрізняється один від одного. Час повного перемикання із урахуванням вимикання та вимикання зчеплення, вимикнення передачі та переходу через нейтральне положення може складати 1,5–2 с. За цей час швидкість автомобіля зменшується пропорційно опору тиску та дорожньому опору.

Одним із найбільш простих та дієвих способів зменшити час синхронізації є збільшення зусилля на синхронізаторі. Одночасно, щоб зберегти ресурс синхронізатора, необхідно збільшити площу тертія, завдяки чому зменшується питома робота буксування. Робота, що витрачається на вирівнювання кутових швидкостей (позиціонування кінетичної енергії обертових деталей), дорівнює

\[L_c = 0,5 \cdot J_n \cdot (\omega_{n+1} - \omega_1)^2. \]

(6)

Виходячи з рівняння (6), можна сказати, що робота буксування синхронізатора не залежить від часу синхронізації. Питома робота тертія, в залежності від відносної швидкості синхронізатора, визначається:

\[l_c = \frac{L_c}{A_c} \leq [l_c^*]. \]

(7)

Висновки

Спираючись на проведенні дослідження, можна сформувати напрями подальших досліджень процесів, що відбуваються під час перемикання передач. Використовуючи розроблену модель, необхідно провести аналіз пристроїв, які забезпечують розгін чи пригальмування інерційної системи проміжного вала з первинним. Такі пристрої дають змогу забезпечити вімкнення передач без процесу синхронізації, що забезпечує вимкнення із конструкції коробки передач синхронізатора, а замінити їх на муфти миттєвого вімкнення.

Література

Рецензент: В.П. Волков, професор, д.т.н., ХНАДУ.

Стаття надійшла до редакції 17 травня 2011 р.