Proactive analysis of road traffic accidents in the Republic of Kazakhstan based on machine learning models and geographic information systems

dc.contributor.authorKobdikova, Sh.
dc.contributor.authorChupekov, Y.
dc.contributor.authorArimbekova, P.
dc.contributor.authorNokhatov, M.
dc.contributor.authorКобдикова, Ш. М.
dc.contributor.authorЧупеков, Ю. К.
dc.contributor.authorАримбекова, П. М.
dc.contributor.authorНохатов, M. А.
dc.date.accessioned2026-01-22T11:53:07Z
dc.date.issued2025
dc.description.abstractThe article is devoted to the development of a methodology for proactive analysis of road traffic accidents (RTAs) in the Republic of Kazakhstan (RK). Traditional retrospective approaches do not provide sufficient effectiveness in preventing incidents under conditions of annually. increasing acci-dent rates and significant socio-economic losses, which exceed USD 7 billion per year. Goal. The aim of this study is to provide a theoretical justification for a proactive analysis methodology based on machine learning (ML) models. Methodology. The proposed approach is grounded in the integration of Big Data obtained from the national digital platform TOR (Traffic Operational Response) and the application of predictive ML models such as Random Forest and XGBoost. Originality. The scientific novelty lies in the synthesis of ML models and GIS-based analysis to create a dynamic proactive model for RTA risk assess-ment, adapted for the first time to the specific data environment of Kazakhstan. The developed framework enables the prediction of both the probability and the severity of RTAs on specific road segments using dy-namic influencing factors. Results.The results can be utilized by road infrastructure agencies and law en-forcement bodies in Kazakhstan for targeted patrolling and proactive interventions. Practical value. It is recommended to integrate the ML module directly into the TOR platform and to establish standardized interagency data exchange procedures.
dc.identifier.citationProactive analysis of road traffic accidents in the Republic of Kazakhstan based on machine learning models and geographic information systems / Sh. Kobdikova, Y. Chupekov, P. Arimbekova, M. Nokhatov // Автомобільний транспорт : зб. наук. пр. / М-во освiти i науки України, Харків. нац. автомоб.-дор. ун-т ; редкол.: А. В. Гнатов (гол. ред.) та iн. – Харкiв, 2025. – Вип. 57. – С. 54–59.
dc.identifier.urihttps://dspace.khadi.kharkov.ua/handle/123456789/27810
dc.language.isoen
dc.publisherХарківський національний автомобільно-дорожній університет
dc.subjectproactive rta analysis
dc.subjectmachine learning
dc.subjectrandom forest
dc.subjectxgboost
dc.subjectgis analysis
dc.subjectbig data
dc.subjectTOR (Traffic Operational Response)
dc.subjectrisk prediction
dc.subjectKazakhstan
dc.subjectroad safety
dc.subjectпроактивний аналіз RTA
dc.subjectма-шинне навчання
dc.subjectвипадковий ліс
dc.subjectгіс-аналіз
dc.subjectвеликі дані
dc.subjectTOR (реагування на дорож-ній рух)
dc.subjectпрогнозування ризиків
dc.subjectКазахстан
dc.subjectбезпека дорожнього руху
dc.subject.doi10.30977/AT.2219-8342.2025.57.0.07
dc.subject.udc656.13
dc.titleProactive analysis of road traffic accidents in the Republic of Kazakhstan based on machine learning models and geographic information systems
dc.title.alternativeПроактивний аналіз дорожньо-транспортних пригод у Республіці Казахстан на основі моделей машинного навчання та геоінформаційних систем
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07_Kobdikova.pdf
Size:
332.52 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.87 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections