Predictive maintenance using artificial intelligence and machine learning
Вантажиться...
Дата
2024
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Харківський національний автомобільно-дорожній універститет
Анотація
Predictive maintenance is a method that helps predict potential equipment
failures and avoid unexpected breakdowns. Recently, artificial intelligence (AI) and machine
learning (ML) technologies have increasingly been used for predictive maintenance. These
technologies allow significant reductions in emergency repair costs and extend the lifespan of
equipment. This article explores how these technologies can be applied in Kazakhstan to
improve maintenance processes in industries. The aim of the work is to investigate predictive
maintenance methods and adapt them to the conditions of Kazakhstan's industry. The following
methods are used in the study: Analysis of historical data on failures to predict future
breakdowns; Use of sensors to analyze equipment status in real time; Development of hybrid
models combining different approaches to improve prediction accuracy.
The results of the study showed that using AI and ML for predictive maintenance can help
reduce repair and maintenance costs and improve equipment performance. Data analysis from
sensors allows timely detection of faults, which helps avoid prolonged downtimes. During the
study, failure prediction models were developed, showing prediction accuracy of up to 98.7%
with low error rates. These models can be useful not only for large enterprises but also in other
sectors of Kazakhstan's economy, such as energy, agriculture, and transportation, which will
improve the overall efficiency of the industrial sector.
Опис
Ключові слова
predictive maintenance, artificial intelligence, machine learning, equipment failures, sensors, hybrid models, Kazakhstan, industry.
Бібліографічний опис
Tleuova, A. A. Predictive maintenance using artificial intelligence and machine learning / A. A. Tleuova, G. S. Beketova // Комп’ютерно-інтегровані технології автоматизації технологічних процесів на транспорті та у виробництві : матеріали всеукр. наук.-практ. конф. здобувачів вищ. освіти і молодих учених, 20 листоп. 2024 р. / Харків. нац. автомоб.-дор. ун-т. – Харкiв, 2024. – С. 329–333.